13.5 Posterior predictions
The function brms::posterior_predict
returns samples from the posterior predictive distribution of a brms_fit
object.
For example, the code below yields 4000 sampled predictions for each of the 269 year
values in the world temperature data set.
<- brms::posterior_predict(fit_temperature)
samples_post_pred_temperature dim(samples_post_pred_temperature)
## [1] 4000 269
The function brms::posterior_predict
can also be used to sample from the posterior predictive distribution of a fitted regression model for new values of the model’s predictors.
If we are interested in predictions of average world surface temperature for the years 2025 and 2040, all we need to do is supply a data frame (or tibble) with the predictor values of interest as an argument.
# create a tibble with new predictor values
<- tribble(
X_new ~ "year", 2025, 2040
)# get sample predictions from the Bayesian model
<- brms::posterior_predict(fit_temperature, X_new)
post_pred_new # get a (Bayesian) summary for these posterior samples
rbind(
::summarize_sample_vector(post_pred_new[,1], "2025"),
aida::summarize_sample_vector(post_pred_new[,2], "2040")
aida )
## # A tibble: 2 × 4
## Parameter `|95%` mean `95%|`
## <chr> <dbl> <dbl> <dbl>
## 1 2025 8.43 9.19 9.99
## 2 2040 8.50 9.30 10.1