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Learning goals

1. become oriented in the landscape of pragmatic neural NLG 

2. understand different ways in which RSA(-like) ideas can be 
applied in NLG: 
a. during training 

b. during inference



organizational remarks
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Course projects

‣ work in groups (2-3 people are ideal) 
• single-person projects are okay but need motivation & permission 
• problems in the group discussed w/ lecturer before escalation 
• there will be one grade for the whole group 

‣ outcome of the project 
• structured, documented, self-contained repository w/ all materials 
• highly accessible (reproducible, commented …) code 
• short research paper (PDF) explaining what was done, how this relates 

the to literature, why it was done and what was achieved or found 

‣ content & scope 
• critical conceptual / mathematical work (even w/o any code) is welcome 
• typical project will aim to reproduce key results from a single paper 
• ambitious projects can shine by additionally: 

- extending or combining existing analyses 
- critically discussing existing analyses (in the light of the literature or project results) 
- conceptually motivated exploration of novel models, different data sets, other 

evaluation measures … 
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How to read a research paper

‣ identify key innovation / argument / point of the paper 
• how novel or important is this? 

‣ track what you like and dislike 
• e.g., what’s well explained, what’s incomprehensible? 
• how can you incorporate what’s good into your own repertoire? 
• how would you have done it differently? 

‣ track what / how much you understand 
• what would I need in addition to understand more? 
• what don’t I understand that I don’t need to understand? 

‣ take notes 
• organize and revisit your notes



RSA meets neural NLG



states
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Pragmatic back-and-forth reasoning

s1, s2, s3, s4, … 

u1, u2,  u3, … 

PS(u |s) PL(s |u)

utterance

listenerspeaker

speaker and listener reason about each other’s behavior in a share context
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Grounding pragmatic reasoning
in a (dummy) literal listener

literal 
listener

pragmatic 
speaker

pragmatic 
listener
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RSA-style “Inverse-RSA”
literal listener grounding literal speaker grounding

literal L0-listener

pragmatic L1-speaker

hyper-pragmatic L2-listener

pragmatic L1-listener

literal L0-speaker

hyper-pragmatic L2-speaker

Rabin (1990), Franke & Jäger (2014)
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“standard RSA” “inverse RSA”
literal listener grounding literal speaker grounding

literal L0-listener 
PL0

(s |u) ∝ P(s) 𝔏(s, u)

pragmatic L1-speaker 

PS1
(u |s) = SMα (log PL0

(s |u) − C(u))

hyper-pragmatic L2-listener 
PL2

(s |u) ∝ P(s) PS1
(u |s)

pragmatic L1-listener 
PL1

(s |u) ∝ P(s) PS0
(u |s)

literal L0-speaker 
PS0

(u |s) ∝ P(u) 𝔏(u, s)

hyper-pragmatic L2-speaker 

PS2
(u |s) = SMα (log PL1

(s |u) − C(u))
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Overview
different kinds of npNLG approaches



Learning in the RSA model
Monroe & Potts (2015), Proc. of Amsterdam Colloquium
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Learning in the RSA model
data & modeling set-up

Monroe & Potts (2015)

‣ goal: use empirical data to infer semantic 
meaning that optimizes performance of a 
speaker model (literal or pragmatic) 

‣ data from TUNA corpus 
• human referential descriptions 
• annotated discrete features of objects 

‣ literal meanings are learned from corpus data 
• , where 

-                     is a linear mapping 

-     is a feature representation function 

‣ inverse RSA architecture 
•  

•  

•

𝔏(s, u, c) = θTφ(s, u, c)
θT

φ(s, u, c)

PS0
(u ∣ s, c) = SMα (𝔏(s, u, c))

PL1
(s ∣ u, c) ∝ PS0

(u ∣ s, c)

PS2
(u ∣ s, c) = SMα (PL1

(s ∣ u, c))

example from the TUNA corpus
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Learning in the RSA model
evaluation & results

Monroe & Potts (2015)

‣ evaluation metrics: 
• compare features selected by human & machine 
• accuracy: perfect match in all features 
• dice score: degree of overlap selected features 

‣ models compared: 
• untrained RSA (just using features) 
• speaker models with learned semantics: 

- literal vs pragmatic speakers 
- based on different kinds of features: 

๏ basic features 
๏ additional information on human-like generation 

‣ upshot & evaluation: 
• outperforms RSA (w/ predefined meanings) 
• trained S1 is best on aggregate data 
• BUT: requires a curated set of discrete features

results reported in the paper



Pragmatic Reinforcement Learning
Ohmer, Franke & König (2021), Cognitive Science
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Mutual exclusivity (ME) bias

Anti-ME bias in neural networks
Ghandi & Lake (2020, arXiv)
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Gradient-based RL of semantic values
literal agents

‣ agents update lexical meanings via RL 

‣ policy defined by lexicon
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Gradient-based RL of semantic values
pragmatic agents

‣ agents update lexical meanings via RL 

‣ policy defined by lexicon & RSA
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Simulation set-up & results

‣ set-up: 
• 10 states and messages matched 1-to-1 
• 9 pairs for training 
• 1 hold-out pair (index 10) for testing 

‣ results: 
• lexical and behavioral ME bias for pragmatic agents, 

but not for literal agents 

‣ extensions: 
• dynamically growing lexica 
• similarities to human word learning: 

- ME increases with vocabulary size 
- ME increases with exposure 
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Pragmatic RL in open-ended message & state spaces

‣ image embedding 

 

‣ message embedding 

 

‣ semantic meaning: 

f : I → [0; 1]n

g : M → [0; 1]n

𝔏(s, m) = f(s) ⋅ g(m)

pragmatics

language

joint 
embedding 

space
C

N
N

em
be

dd
in

g 
 

la
ye

r

“five”target

distractor

meaning  
similarity

≈

policy

RSA

vision



‣ set-up: 
• MNIST images as states 
• single embedding layer for single-word messages 
• one hold-out state/message 

‣ results: 
• agents show behavioral ME bias 

‣ negative sampling: 
• include non-matching image-word pairs during 

training marked as “negative examples” 
- Gulordava et al (2020); Vong & Lake (2022) 

• not required w/ pragmatic RL, even detrimental

21

Simulation set-up & results
pragmatic RL w/ joint image-word embeddings



Generation and comprehension of 
unambiguous object descriptions

Mao et al. (2016), CVPR
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Pragmatic object reference
learning context-discriminative object descriptions

Mao et al. (2016)

‣ task: 
• generate (unambiguous) referential description for a 

target object in an image 
• infer the intended referent object from a given 

description in an image 

‣ training set: 
• Google Refexp data set 

• data points are triples:  
- caption  
- image 
- region (bounding box, represents objects) 

‣ approach: 
• train S0 and S2 from “inverse RSA” 

⟨c, i, r⟩
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Pragmatic object reference
system architecture

Mao et al. (2016)

‣ literal speaker: 

•  

• trained as image captioner w/ objective function: 
 

‣ pragmatic listener: 

•                 [uniform priors] 

• implicit competitor set : 
- all objects in the picture 
- all objects of the same category 
- randomly generated bounding boxes 

‣ pragmatic speaker: 

•                 [  = 1] 

• trained as image captioner w/ objective function: 
                                        [max. mutual information] 

PS0
(c ∣ i, r)

−log PS0
(c ∣ i, r)

PL1
(r ∣ c, i) ∝ PS0

(c ∣ i, r)
R(i)

PS2
(c ∣ i, r) ∝ PL1

(r ∣ c, i) α

−log PL1
(r ∣ c, i)
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Pragmatic object reference
results

Mao et al. (2016)

‣ human raters: percentage of generated 
descriptions that are at least as good as the 
description in the data set: 
• 15.9% for S0 

• 20.4% for S1 S0

S0

S2

S2

S0

S2

‣ accuracy of generated descriptions
different competitor 

sets at test time

synthetic 
data

human 
data



Generating visual 
explanations

Hendricks et al. (2016), ECCV
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Generating visual explanations
overview

Hendricks et al. (2016)

‣ goal: produce caption for image  that justifies why  

is an instance of given category  

‣ data: caption-image-category triples  

• CUB-justify data set 

‣ approach:  
• S1-like agent, similar to Andreas & Klein (2016) 
• all pragmatics trained-in (like Mao et al. (2016) 
• loads of performance bells-&whistles

i i
C

⟨c, i, C⟩
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Generating visual explanations
Model architecture: overview

Hendricks et al. (2016)
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Generating visual explanations
Model architecture

Hendricks et al. (2016)

‣ literal listener: pretrained LSTM classifier:  

‣ literal speaker: pretrained NIC:  

• used to produce class labels to condition pragmatic speaker on 

• input for class  to  is average of embeddings for all  belonging 

to , produced by literal speaker 

‣ pragmatic speaker: trained speaker module   

• trained to maximize objective function: 

PL0
(C ∣ c)

PS0
(c ∣ i)

C S1 i
C

PS1
(c ∣ i, C)

log P(c ∣ i, C) + log PL0
(C ∣ c)

S0-like caption information for L0  
about category



Reasoning about pragmatics 
w/ neural listeners and speakers

Andreas & Klein (2016), EMNLP
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Neural-Pragmatic Natural Language Generation
for contrastive image captioning

Andreas & Klein (2016)

‣ goal: produce caption  that picks out target 

image  over distractor  

‣ data: image-caption pairs  

‣ literal listener: pre-trained to maximize 
     for all pairs  

‣ literal speaker: pre-trained to maximize 
               for all pairs  

‣ pragmatic speaker (reranker): 
• sample candidates:     

 

• score candidates:  

 

• select caption w/ max. score

c
it id

(it, c)

PL0
(it ∣ it, id, c) (it, c)

PS0
(c ∣ it) (it, c)

c1, …, cn ∼ PS0
( ⋅ ∣ it)

sk = PL0
(it ∣ it, id, ck)1−λ PS0

(c ∣ it)λ
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Neural-Pragmatic Natural Language Generation
results

Andreas & Klein (2016)

‣ the more samples we take to score, the 
higher the accuracy 

‣ accuracy deteriorates with increasing  

‣ pragmatic speaker models beats literal 
speaker baseline, and a reimplementation 
of the Mao et al. (2015) model 

λ



Pragmatically Informative 
Image Captioning with 
Character-Level Inference

Cohn-Gordon, Goodman & Potts (2018), NAACL
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Incremental neural RSA
model architecture

Cohn-Gordon, Goodman & Potts (2018)

‣ goal: produce caption  that singles out the target 

image  given a distractor set 

‣ data: image-caption pairs  

‣ literal speaker: pre-trained NIC 
                                           [neural network] 

‣ L1-listener: Bayes rule w/ partial captions 
         [uniform priors]     

‣ pragmatic speaker (incremental RSA): 
         

‣ granularity: 
• word-level: each  is a full word 

• character-level: each  is a single character

c
it

(it, c)

PS0
(w1:n ∣ i)

PL1
(i ∣ w1:n) ∝ PS0

(w1:n ∣ i)

PS2
(wn+1 ∣ i, w1:n) ∝ PL1

(i ∣ w1:(n+1))α PS0
(w1:(n+1) ∣ i)

wn

wn

2
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Excursion
formal details of incremental RSA

PL1
(i ∣ w1:n) =

P(i) PS0
(w1:n ∣ i)

∑j P( j) PS0
(w1:n ∣ j)

=
P(i) PS0

(w1:(n−1) ∣ i) PS0
(wn ∣ w1:(n−1), i)

∑j P( j) PS0
(w1:(n−1) ∣ j) PS0

(wn ∣ w1:(n−1), j)

=
1
C P(i) PS0

(w1:(n−1) ∣ i) PS0
(wn ∣ w1:(n−1), i)

∑j
1
C P( j) PS0

(w1:(n−1) ∣ j) PS0
(wn ∣ w1:(n−1), j)

=

P(i) PS0
(w1:(n−1) ∣ i)

∑k P(k) PS0(w1:(n−1) ∣ k)
PS0

(wn ∣ w1:(n−1), i)

∑j

P( j) PS0(w1:(n−1) ∣ j)

∑k P(k) PS0(w1:(n−1) ∣ k)
PS0

(wn ∣ w1:(n−1), j)

=
P(i ∣ w1:(n−1)) PS0

(wn ∣ w1:(n−1), i)
∑j P( j ∣ w1:(n−1)) PS0

(wn ∣ w1:(n−1), j)

[our reformulation w/ prior]

[chain rule]

[introducing constant]

[set k to normalization term]

[formulation from the paper]
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Excursion
formal details of incremental RSA

PS2
(wn+1 ∣ i, w1:n) ∝ exp (α (log PL1

(i ∣ w1:(n+1)) − Cost(w1:(n+1), i)))
∝ PL1

(i ∣ w1:(n+1))α exp (−Cost(w1:(n+1), i))
= PL1

(i ∣ w1:(n+1))α PS0
(w1:(n+1) ∣ i)

[vanilla RSA]

[rules of exponential function]

[defining costs via S0 production]

Upshot: 

incremental RSA is, by definition, just plan vanilla RSA 

(with a special interpretation of the cost term)

Cost(w1:n, i) = log PS0
(w1:n ∣ i)−α
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Incremental neural RSA
results

Cohn-Gordon, Goodman & Potts (2018)

‣ compare literal and pragmatic models, for 
character- and word-level incremental predictions 

• but table shows possibly misleading contrast 
• Char S2 uses beam search for decoding (beam size 10) 

but Word S2 uses greedy decoding 
• with greedy decoding  Char S2 scores 61.2% on TS1 
• the advantage could solely come from different decoding



Context-aware Captions from 
Context-agnostic Supervision

Vedantam et al. (2017), CVPR
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Emitter-Suppressor model
Task-neutral pre-trained NICs for justification & discriminative captioning

‣ tasks: 
• justification: describe picture by contrasting it against a 

competitor class 
• discrimination: describe picture by contrasting it 

against a competitor image 

‣ approach: 
• task-neutral pre-trained NIC 
• novel “pragmatic beam search” 
• emitter-suppressor objective function 

- similar but not equivalent to an RSA S2 model 

‣ data sets: 
• CUB-Justify (novel) 

- extension of the CUB data set w/ new contrastive captions 
- participants described an image in contrast to six images from 

the contrast class 

• MS-COCO

Vedantam et al. (2017)

justification

discrimination
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Emitter-Suppressor model
model architecture

‣ baseline models (S0): 
• justification:  

    [caption given image and target class] 

• discrimination:  

            [caption given image] 

‣ pragmatic speaker (“S2”) (here only for justification): 

 

‣ beam-search maximization: 
• score each proposed word  by ES objective: 

PS0
(w1:n ∣ i, Ct)

PS0
(w1:n ∣ i)

PS2
(w1:n ∣ i, Ct, Cd) ∝ λ log PS0

(w1:n ∣ i, Ct) +

(1 − λ) log
PS0

(w1:n ∣ i, Ct)
PS0

(w1:n ∣ i, Cd)

wn+1

log
PS0

(w1:n ∣ i, Ct)
PS0

(w1:n ∣ i, Cd)(1−λ)

Vedantam et al. (2017)
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Emitter-Suppressor model
relation to RSA

‣ the ES-model is formulated only for maximization, but we can define a probabilistic speaker 
similar to RSA like so: 

 

‣ formal results: 
• this model and a vanilla S2 RSA speaker predict the same ordering on captions if  &  

• predictions are still not identical for  &  
• for other parameter settings, they are not even order equivalent (i.e., could have different arg-max values) 

‣ desideratum / open question: 
• systematically investigate model differences  
• empirically test w/ human subjects

PES(w1:n ∣ i, C) = SMα (log
PS0

(w1:n ∣ i, Ct)
PS0

(w1:n ∣ i, Cd)(1−λ) )
α = 1 λ = 1

α = 1 λ = 1

Vedantam et al. (2017)



Pragmatic Issue-Sensitive 
Image Captioning

Nie et al. (2020), EMNLP
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Pragmatic Issue-Sensitive Image Captioning
goal and approach

Nie et al. (2020)

‣ goal: image captions that address a topic question 
• topic question is given by a set of images 

‣ set-up: S0-L1-S2 architecture with (pragmatic) beam 
search, but additional utility components in S2 

• S0 is from Hendricks et al. (2016) 

‣ data: CUB-captions (Reed et al. 2016) 

‣ additionally: visual question-answering on MS-COCO
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Pragmatic Issue-Sensitive Image Captioning
model

Nie et al. (2020)

‣ data: image-caption pairs  

‣ issue: an issue  is a partition of a subset of images 
•  is the element of  that contains  

‣ literal speaker:  pre-trained NIC [from Hendricks et al. (2016)]                           

‣ L1-listener: Bayes rule    [uniform priors]     

‣ pragmatic speakers: 

         

‣ utility functions: for  

 

 

(it, c)

C
C(i) C i

PS0
(c ∣ i)

PL1
(i ∣ c) ∝ PS0

(c ∣ i)

PX
S2

(c ∣ i, C) = SM (UX(i, c, C) + log PS0
(c ∣ i))

X ∈ {∅, C, C + H}

U(i, c, C) = log PL1
(i ∣ c)

UC(i, c, C) = log PL1 (C(i) ∣ c)
UC+H(i, c, C) = βUC(i, c, C) + (1 − β)ℋ (PL1 ( ⋅ ∣ C(i), c))
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Pragmatic Issue-Sensitive Image Captioning
evaluation & results

Nie et al. (2020)

‣ automatic assessment of pragmatic adequacy 

‣ human evaluation: 
• 105 participants from MTurk; 13 trials each 
• trials consisted of 110 images and model generations for these 

training 
data

no irrelevant 
features?

% or humans considering  
the issue resolved



Multi-agent Communication 
meets Natural Language

Lazaridou, Potapenko & Tieleman (2020),  ACL
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Fine-tuning from self-play
Multi-Agent Communication meets Natural Language

Lazaridou et al. (2020)

‣ goal: task-specific fine-tuning via self-play in multi-
agent communication games 

‣ set-up: 
• speaker: pre-trained NIC  

• listener: pretrained image picker:  

•  self-play reference game: 
- speaker and listener repeatedly play reference game 
- update behavioral policies based on success/failure in each round 

‣ different architectures for self-play & update 
• functional or structural learning only 
• both functional & structural learning: 

- fine-tuning via reinforcement learning of S0 and/or R0 

- RL-based policy learning for scoring samples from S0 

‣ problem: language drift 
• evolving language is “intelligible” only to the agents

PS0
(c ∣ i)

PL0
(it, id ∣ c)



Data Sets
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MSCOCO
large data set w/ images, captions & labelled-objects

Yin et al. (2014), “Microsoft COCO: Common Objects in Context”, ECCV

‣ > 300k images with: 
• captions 
• bounding boxes for 80 objects w/ labels 

- things (concrete objects) and stuff (background elements) 

‣ URL: https://cocodataset.org

https://cocodataset.org
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Google Refexp
referential expressions for objects in MS-COCO images

Mao et al. (2016) ”Generation and Comprehension of Unambiguous Object Descriptions” , CVPR

‣ subset of images from MS-COCO w/ additional 
referential expressions for objects in the images 

‣ > 26k images with 54k target objects 
• each object types occurs 2-4 times in the picture 
• all objects of that type are sufficiently salient 
• bounding boxes and labels for objects (from MS-COCO) 

‣ ~1.9 referential expressions per target object 
• obtained from MTurk human annotation 

- human producer types referential expression E 
- human interpreter tries to identify target object based on E 
-  if successful E is added to data set, if not discarded 

‣ URL: Google Refexp

https://github.com/mjhucla/Google_Refexp_toolbox


51

Caltech-UCSD Birds
w/ captions and justifications 

Wah et al. (2011) ”Caltech-UCSD Birds-200-2011” , technical report

‣ original CUB 
• ~11.8k images of 200 bird species 
• taxonomic information: order, family, genus, species 
• 312 binary attributes (e.g., bill shape) 
• bounding boxes, attributes & part locations 

‣ CUB-captions extension (Reed et al. 2016) 
• five captions per picture 
• human captioners did not have access to attribute info 

‣ CUB-justify extension (Vedantam et al. 2017) 
• obtained from MTurk human annotation 

- human producer types description of a target image from class X 
in contrast to six images from competitor category Y 

‣ URLs: CUB, CUB-caption, CUB-justify

https://authors.library.caltech.edu/27452/
https://github.com/reedscot/cvpr2016
https://drive.google.com/file/d/0BzE_9iVdhLVsWXg2b2o0TEwtTGc/view?resourcekey=0-fUEHw4qI9CaX2kCYc3w8Lw
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Abstract scenes

Zitnick et al. (2013) ”Bringing Semantics Into Focus Using Visual Attention”, CVPR

‣ 10k synthetic images w/ ~ 6 captions per image 

‣ generation procedure: 
• original scenes: ~1k scenes with 10 descriptions each: 

- based on 80 pieces of clip art 
- first set of human participants instructed to “create an illustration 

for a children’s story book by creating a realistic scene from the clip art” 
- second set of participants created one description for each scene 

• similar scenes: 
- for each written description humans created 10 scenes (see pic) 

• additional labels: 
- human annotators provide ~6 description for each of the 

resulting 10k scenes 

‣ URL: Abstract Scenes

http://optimus.cc.gatech.edu/clipart/

