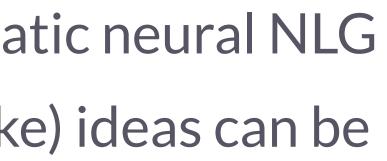
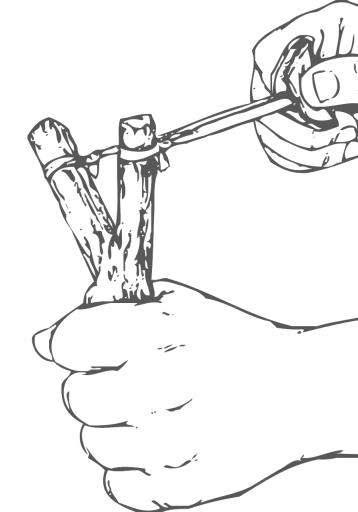
Neural Pragmatic Natural **J**<u>a</u><u>a</u> Generation |

Learning goals

- 1. become oriented in the landscape of pragmatic neural NLG
- 2. understand different ways in which RSA(-like) ideas can be applied in NLG:
 - a. during training
 - b. during inference





organizational remarks

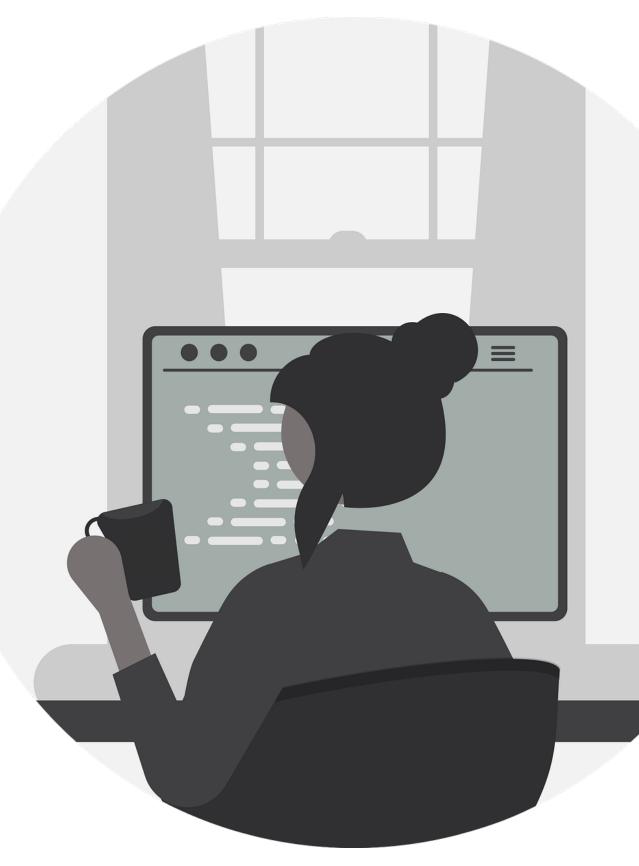
Course projects

- work in groups (2-3 people are ideal)
 - single-person projects are okay but need motivation & permission
 - problems in the group discussed w/ lecturer before escalation
 - there will be one grade for the whole group
- outcome of the project
 - structured, documented, self-contained repository w/ all materials
 - highly accessible (reproducible, commented ...) code
 - short research paper (PDF) explaining what was done, how this relates the to literature, why it was done and what was achieved or found
- content & scope
 - critical conceptual / mathematical work (even w/o any code) is welcome
 - typical project will aim to reproduce key results from a single paper
 - ambitious projects can shine by additionally:
 - extending or combining existing analyses
 - critically discussing existing analyses (in the light of the literature or project results)
 - conceptually motivated exploration of novel models, different data sets, other evaluation measures ...

tion & permission ore escalation

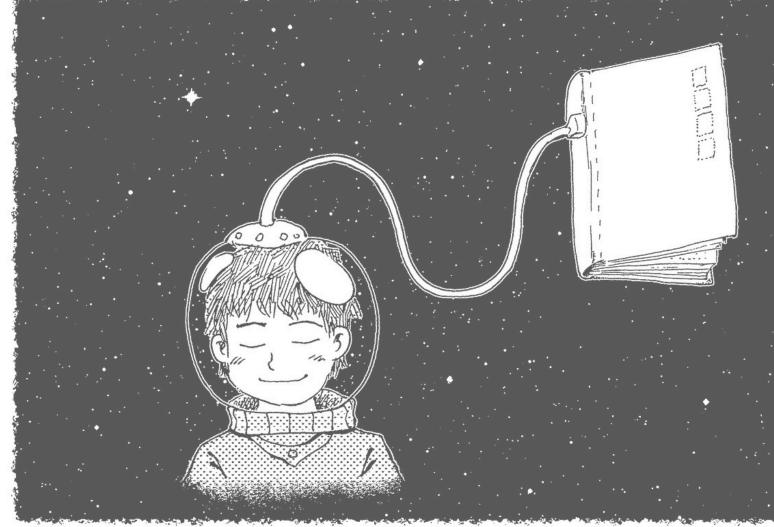
ry w/ all materials

o any code) is welcome rom a single paper



How to read a research paper

- identify key innovation / argument / point of the paper
 - how novel or important is this?
- track what you like and dislike
 - e.g., what's well explained, what's incomprehensible?
 - how can you incorporate what's good into your own repertoire?
 - how would you have done it differently?
- track what / how much you understand
 - what would I need in addition to understand more?
 - what don't I understand that I don't need to understand?
- take notes
 - organize and revisit your notes



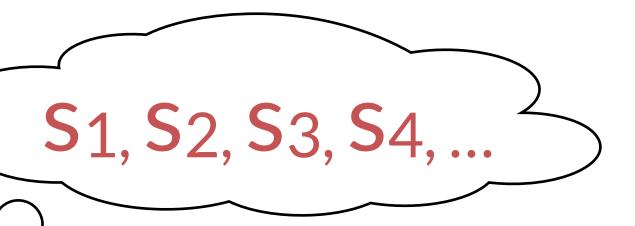
RSA meets neural NLG

Pragmatic back-and-forth reasoning

speaker and listener reason about each other's behavior in a share context

$P_{S}(u \mid s)$

speaker



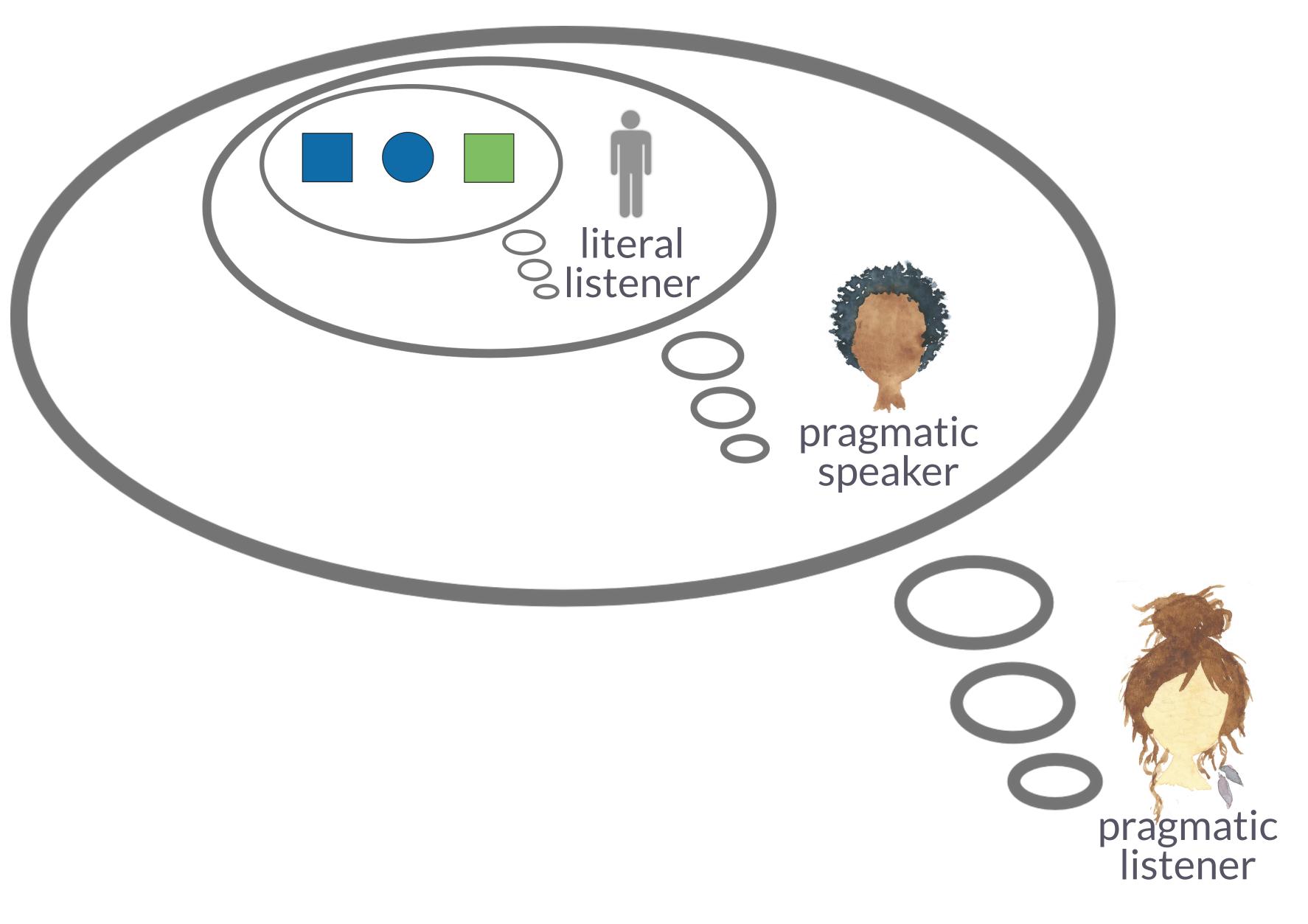
states

$P_L(S \mid u)$

utterance

Grounding pragmatic reasoning

in a (dummy) literal listener



pragmatic L1-speaker

hyper-pragmatic L2-listener

literal LO-speaker

pragmatic L1-listener

hyper-pragmatic L2-speaker

Rabin (1990), Franke & Jäger (2014)

"standard RSA" literal listener grounding

> literal LO-listener $P_{L_0}(s \mid u) \propto P(s) \ \mathfrak{L}(s, u)$

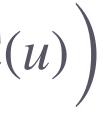
pragmatic L1-speaker $P_{S_1}(u \mid s) = SM_{\alpha} \left(\log P_{L_0}(s \mid u) - C(u) \right)$

hyper-pragmatic L2-listener $P_{L_2}(s \mid u) \propto P(s) P_{S_1}(u \mid s)$

literal LO-speaker $P_{S_0}(u \mid s) \propto P(u) \ \mathfrak{L}(u, s)$

pragmatic L1-listener $P_{L_1}(s \mid u) \propto P(s) P_{S_0}(u \mid s)$

hyper-pragmatic L2-speaker $P_{S_2}(u | s) = SM_{\alpha} \left(\log P_{L_1}(s | u) - C(u) \right)$



Overview different kinds of npNLG approaches



Learning in the RSA model

Monroe & Potts (2015), Proc. of Amsterdam Colloquium

Learning in the RSA model data & modeling set-up

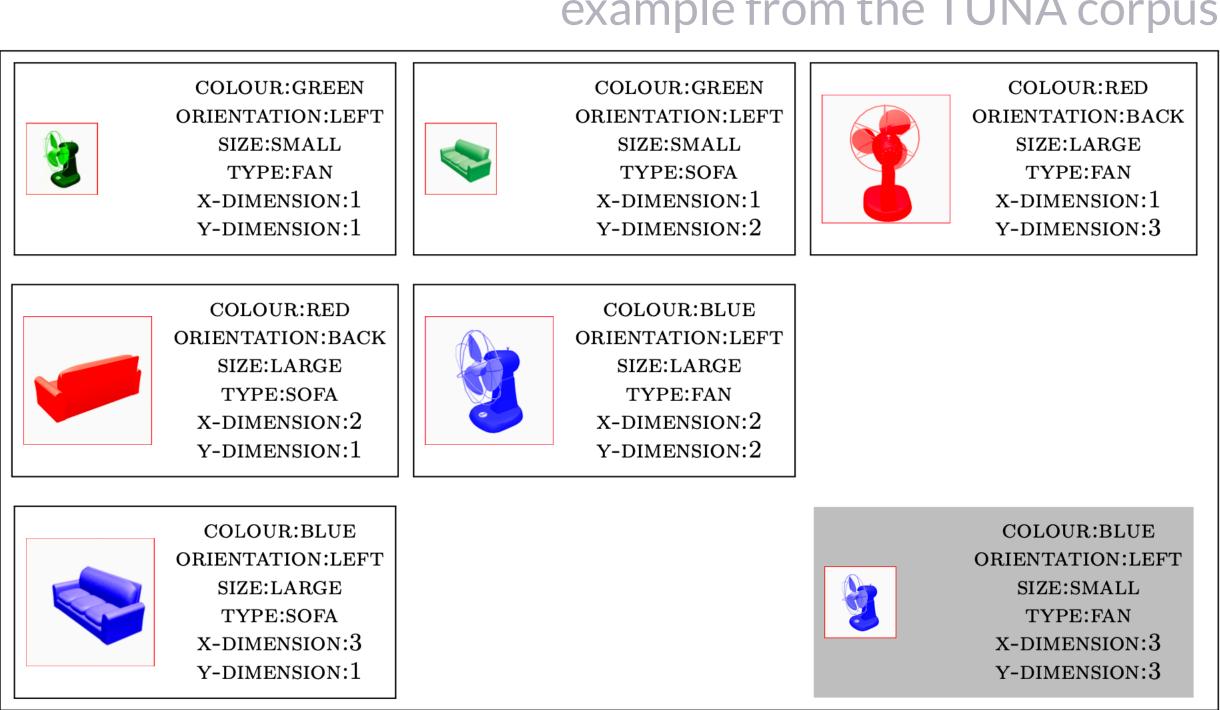
- goal: use empirical data to infer semantic meaning that optimizes performance of a speaker model (literal or pragmatic)
- data from TUNA corpus
 - human referential descriptions
 - annotated discrete features of objects
- Iiteral meanings are learned from corpus data
 - $\mathfrak{L}(s, u, c) = \theta^T \varphi(s, u, c)$, where
 - θ^T is a linear mapping
 - $\varphi(s, u, c)$ is a feature representation function
- inverse RSA architecture

•
$$P_{S_0}(u \mid s, c) = SM_{\alpha}(\mathfrak{L}(s, u, c))$$

• $P_{L_1}(s \mid u, c) \propto P_{S_0}(u \mid s, c)$

$$P_{S_2}(u \mid s, c) = SM_{\alpha}\left(P_{L_1}(s \mid u, c)\right)$$

example from the TUNA corpus



"blue fan small" Utterance: Utterance attributes: [colour:blue]; [size:small]; [type:fan]

Monroe & Potts (2015)

Learning in the RSA model evaluation & results

- evaluation metrics:
 - compare features selected by human & machine
 - accuracy: perfect match in all features
 - dice score: degree of overlap selected features
- models compared:
 - untrained RSA (just using features)
 - speaker models with learned semantics:
 - literal vs pragmatic speakers
 - based on different kinds of features:
 - basic features
 - additional information on human-like generation
- upshot & evaluation:
 - outperforms RSA (w/ predefined meanings)
 - trained S1 is best on aggregate data
 - **BUT:** requires a curated set of discrete features

results reported in the paper

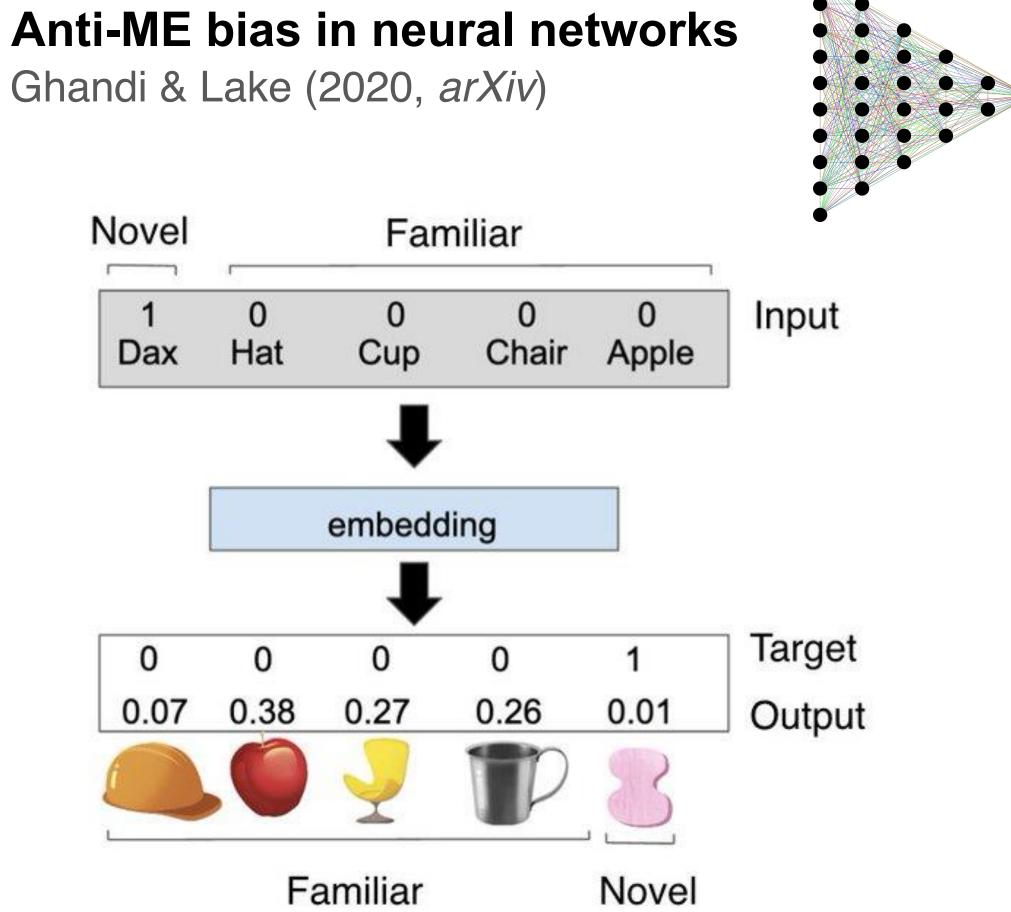
	Furnit	ture	Pec	ople	A	11
Model	Acc.	Dice	Acc.	Dice	Acc.	
RSA s_0 (random true message) RSA s_1	$1.0\%\ 1.9\%$	$.475 \\ .522$	$0.6\%\ 2.5\%$	$.125\\.254$	$1.7\%\ 2.2\%$	
Learned S_0 , basic feats. Learned S_0 , gen. feats. only Learned S_0 , basic + gen. feats.	$16.0\%\ 5.0\%$.779 .788 .812	$9.4\%\ 7.8\%\ 17.8\%$.697 .681 .730	$12.9\%\ 6.3\%$	•
Learned S_1 , basic feats. Learned S_1 , gen. feats. only Learned S_1 , basic + gen. feats.	23.1% 17.4% 27.6 %	.789 .740 .788	11.9% 1.9% 22.5 %	.740 .712 .764	17.9% 10.3% 25.3%	

Monroe & Potts (2015)

Pragmatic Reinforcement Learning

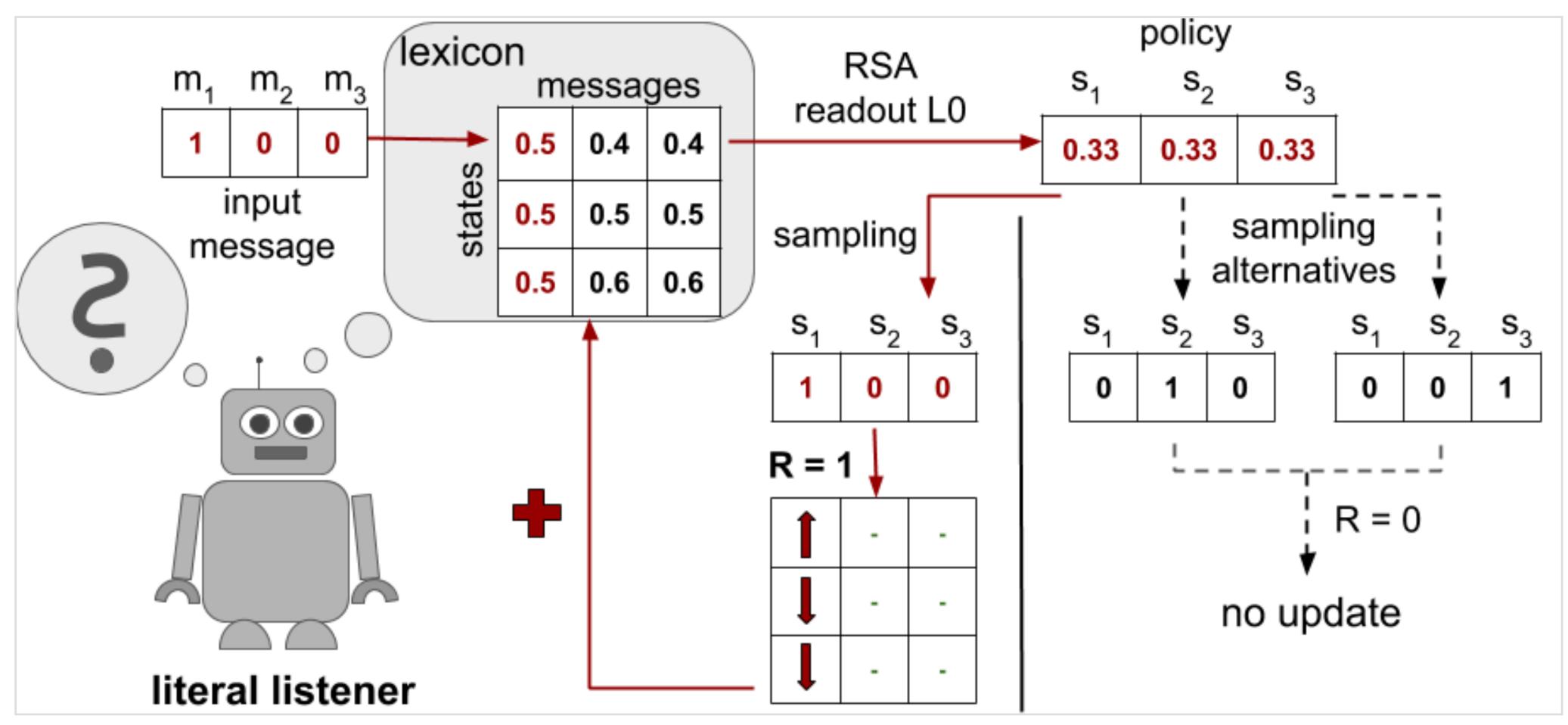
Ohmer, Franke & König (2021), Cognitive Science

Mutual exclusivity (ME) bias



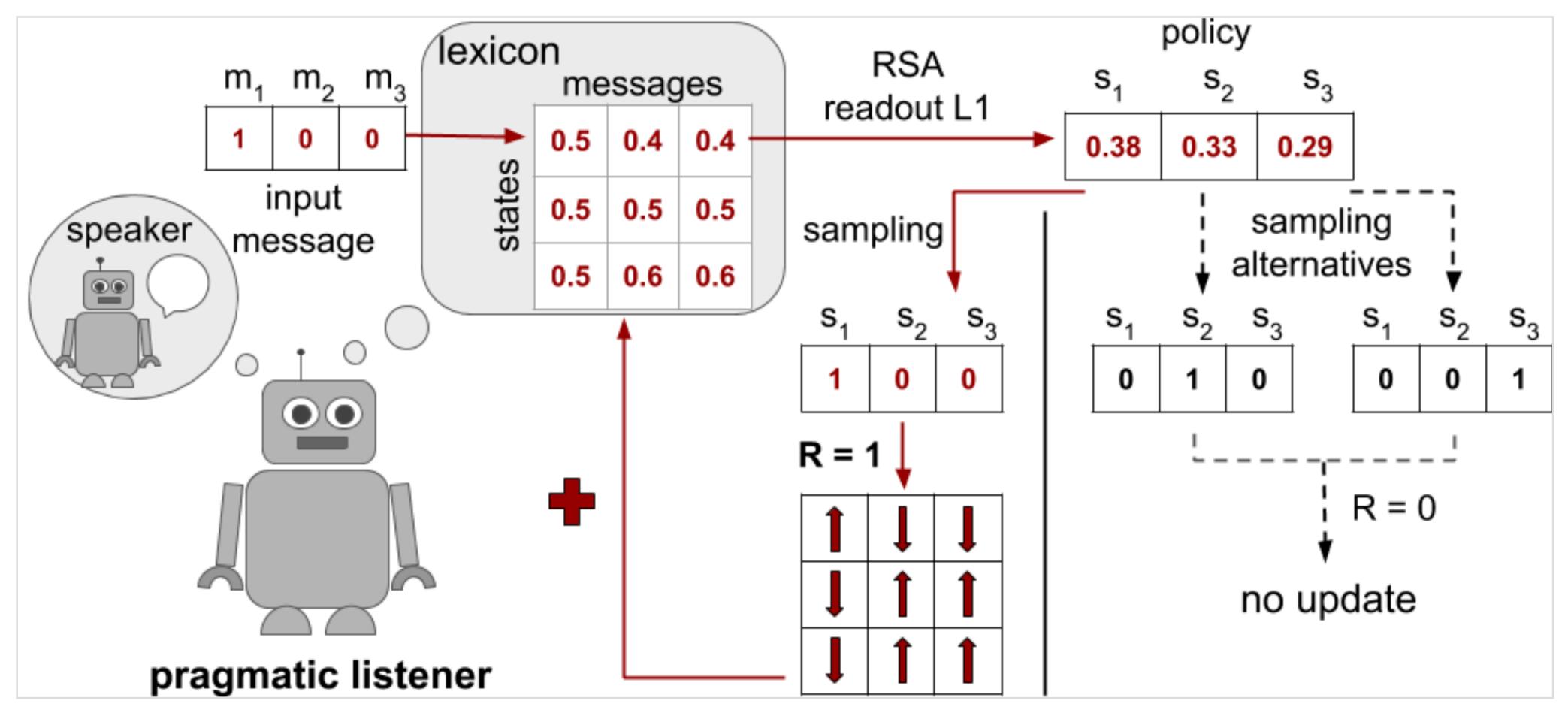
Gradient-based RL of semantic values literal agents

- agents update lexical meanings via RL
- policy defined by lexicon



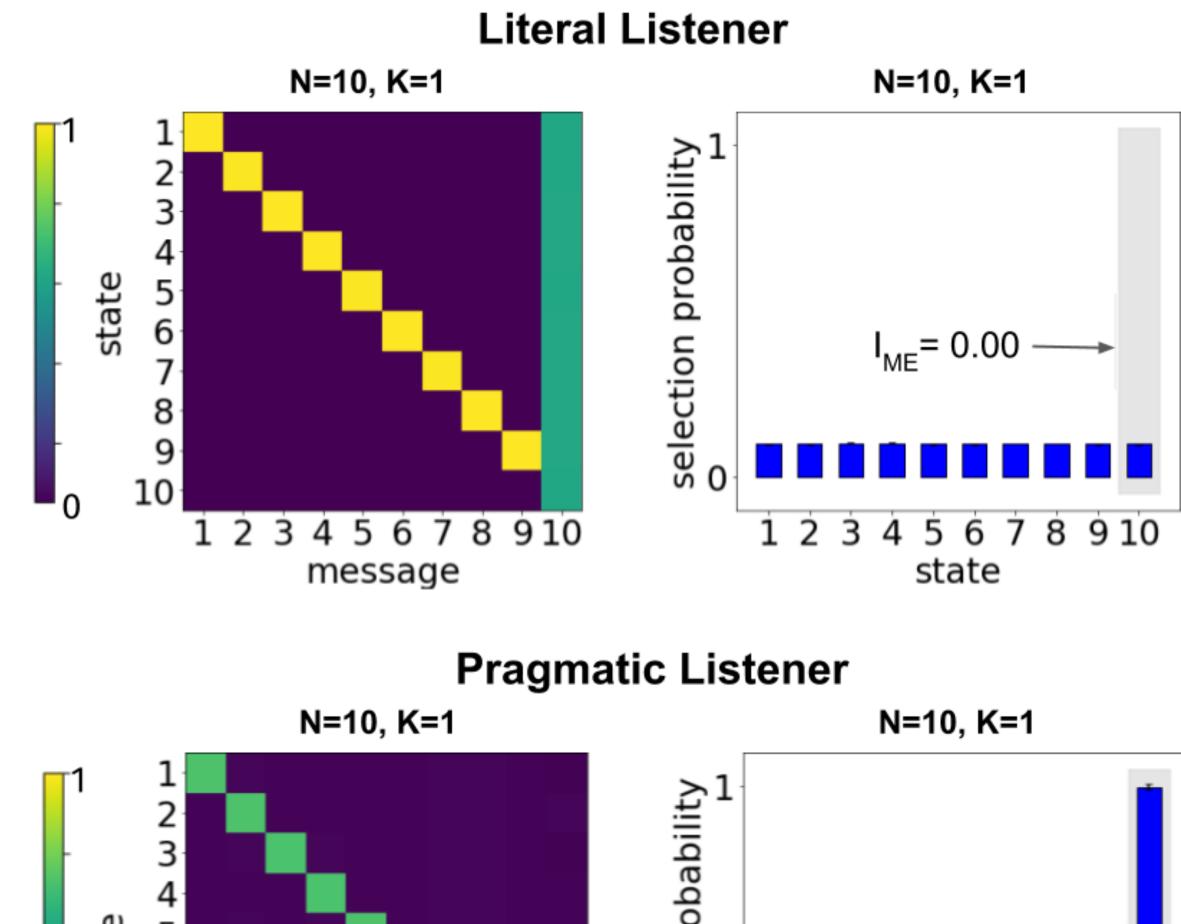
Gradient-based RL of semantic values pragmatic agents

- agents update lexical meanings via RL
- policy defined by lexicon & RSA



Simulation set-up & results

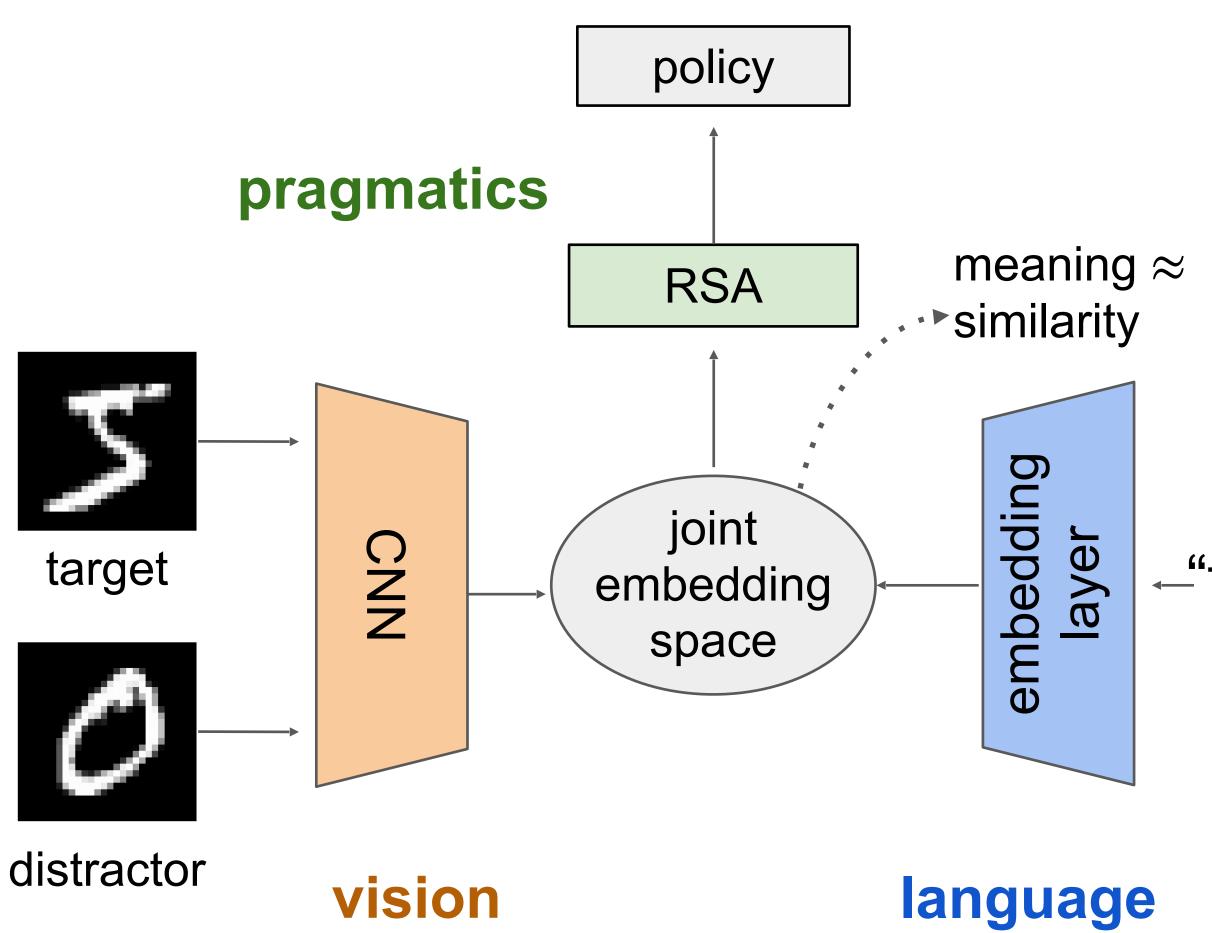
- set-up:
 - 10 states and messages matched 1-to-1
 - 9 pairs for training
 - 1 hold-out pair (index 10) for testing
- results:
 - lexical and behavioral ME bias for pragmatic agents, but not for literal agents
- extensions:
 - dynamically growing lexical
 - similarities to human word learning:
 - ME increases with vocabulary size
 - ME increases with exposure





Pragmatic RL in open-ended message & state spaces

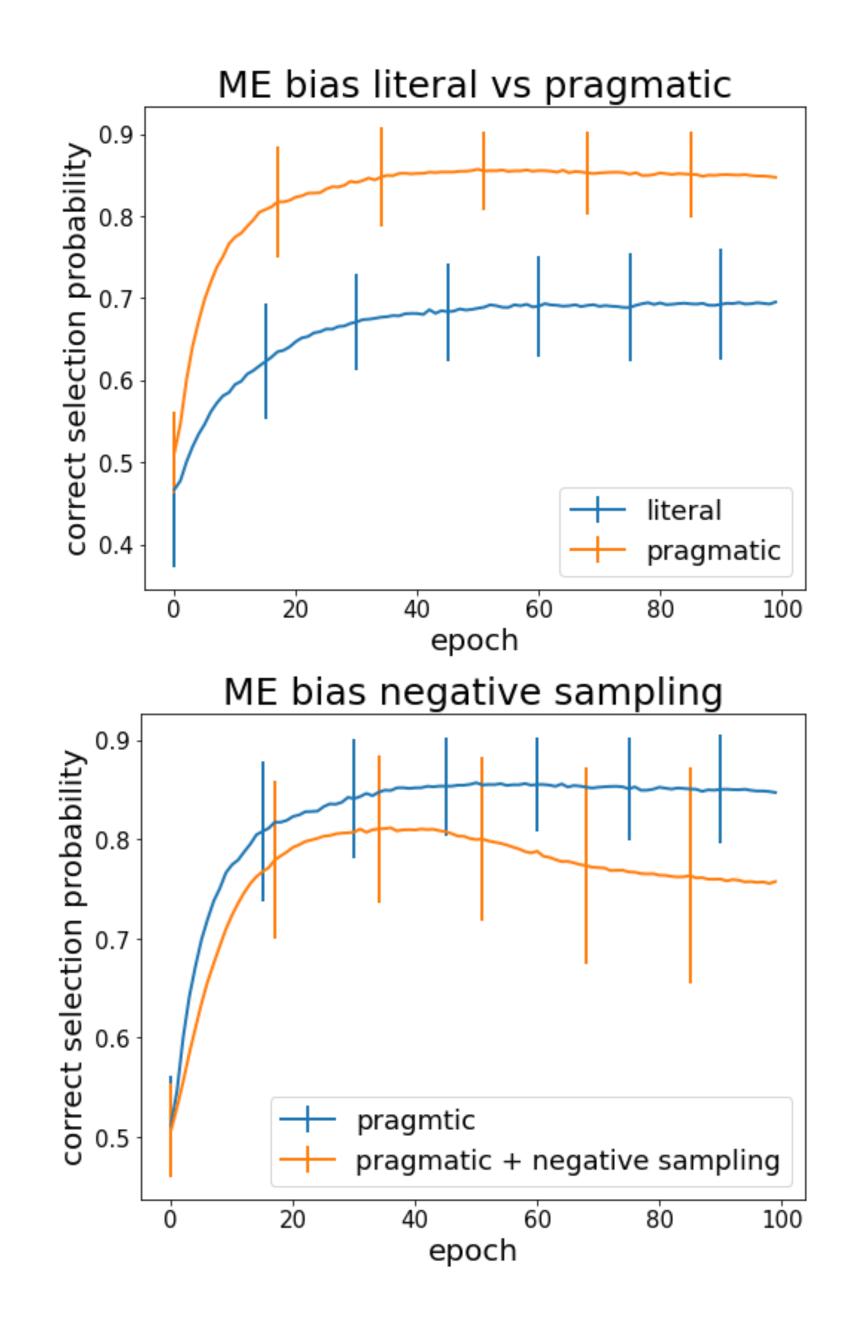
- image embedding $f: I \rightarrow [0; 1]^n$
- message embedding $g: M \to [0; 1]^n$
- semantic meaning: $\mathfrak{L}(s,m) = f(s) \cdot g(m)$



Simulation set-up & results

pragmatic RL w/ joint image-word embeddings

- set-up:
 - MNIST images as states
 - single embedding layer for single-word messages
 - one hold-out state/message
- results:
 - agents show behavioral ME bias
- negative sampling:
 - include non-matching image-word pairs during training marked as "negative examples" - Gulordava et al (2020); Vong & Lake (2022)
 - not required w/ pragmatic RL, even detrimental



Generation and comprehension of unambiguous object descriptions

Mao et al. (2016), CVPR

Pragmatic object reference

learning context-discriminative object descriptions

► task:

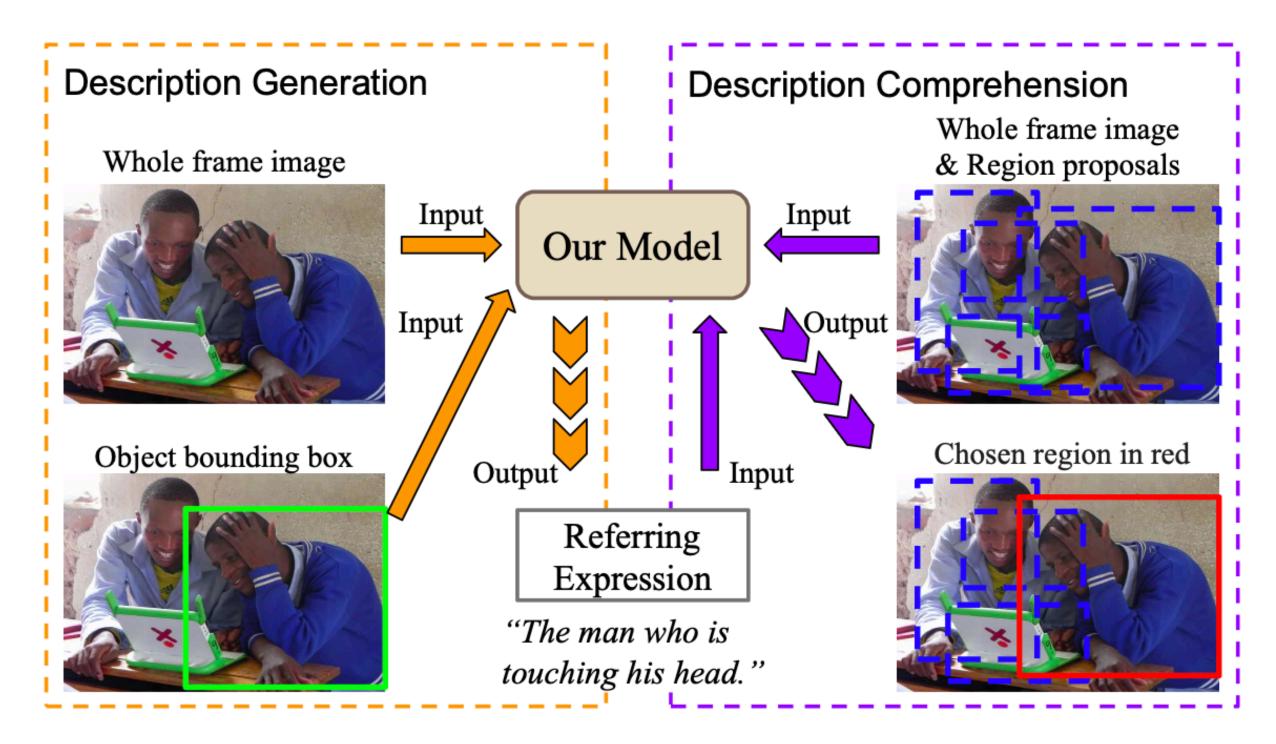
- generate (unambiguous) referential description for a target object in an image
- infer the intended referent object from a given description in an image

training set:

- Google Refexp data set
- data points are triples: $\langle c, i, r \rangle$
 - caption
 - -image
 - region (bounding box, represents objects)

approach:

• train S₀ and S₂ from "inverse RSA"

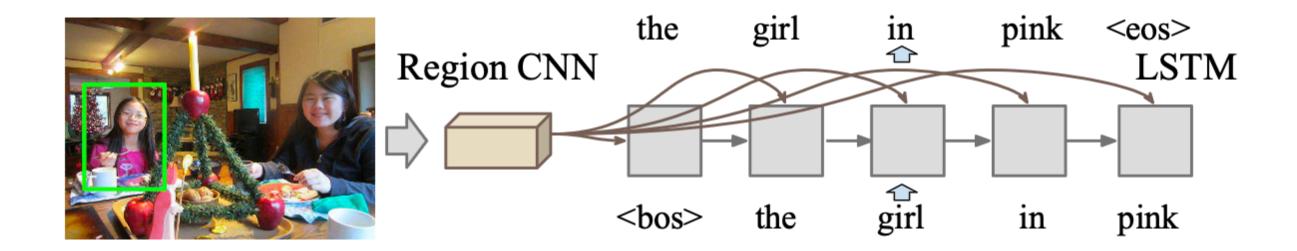


Mao et al. (2016)

Pragmatic object reference

system architecture

- literal speaker:
 - $P_{S_0}(c \mid i, r)$
 - trained as image captioner w/ objective function: $-\log P_{S_0}(c \mid i, r)$
- pragmatic listener:
 - $P_{L_1}(r \mid c, i) \propto P_{S_0}(c \mid i, r)$ [uniform priors]
 - implicit competitor set R(i):
 - all objects in the picture
 - all objects of the same category
 - randomly generated bounding boxes
- pragmatic speaker:
 - $P_{S_2}(c \mid i, r) \propto P_{L_1}(r \mid c, i)$ $\left[\alpha = 1\right]$
 - trained as image captioner w/ objective function: $-\log P_{L_1}(r \mid c, i)$ [max. mutual information]



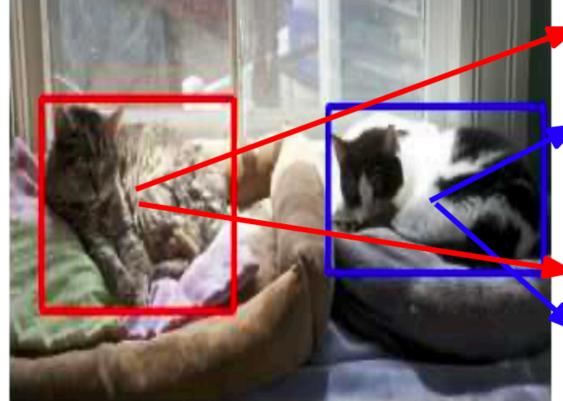
Mao et al. (2016)

Pragmatic object reference results

- human raters: percentage of generated descriptions that are at least as good as the description in the data set:
 - 15.9% for S₀
 - 20.4% for S₁
- accuracy of generated descriptions

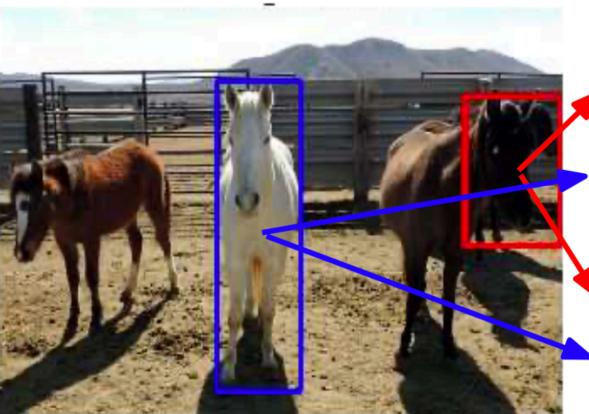
different competitor sets at test time

	Proposals	G	T	Multibox		
	Descriptions	GEN	GT	GEN	GT	
$S_0 -$	-ML (baseline)	0.803	0.654	0.564	0.478	
	MMI-MM-easy-GT-neg	0.851	0.677	0.590	0.492	
S ₂ —	MMI-MM-hard-GT-neg	0.857	0.699	0.591	0.503	
	MMI-MM-multibox-neg	0.848	0.695	0.604	0.511	
	MMI-SoftMax	0.848	0.689	0.591	$\overline{0.502}$	
25	synthetic data					



• A cat laying on the left. A black cat laying on S_2 the right.

A cat laying on a bed. A black and white cat.



A brown horse in the right. • A white horse.

A brown horse. A white horse.

Mao et al. (2016)

Generating visual explanations

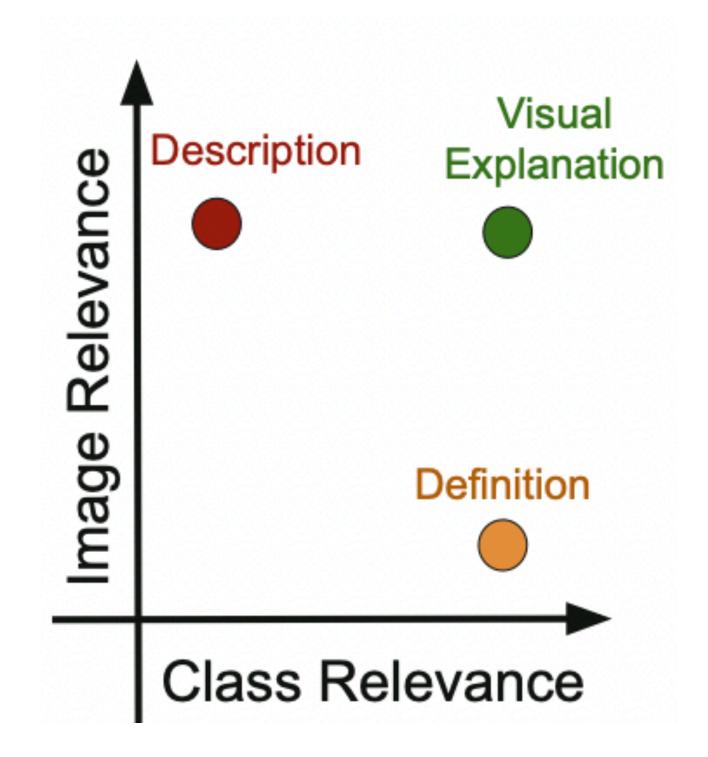
Hendricks et al. (2016), ECCV

Generating visual explanations overview

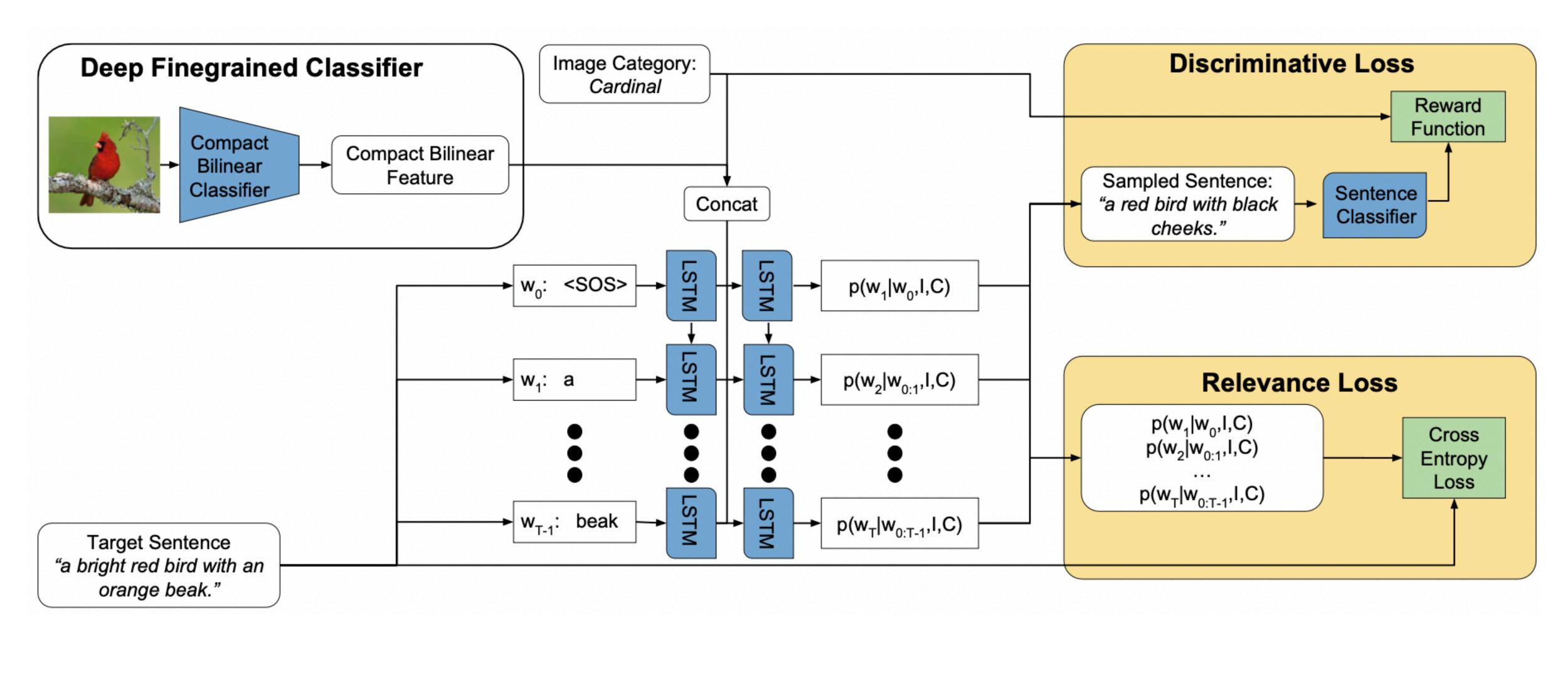
- goal: produce caption for image *i* that justifies why *i* is an instance of given category C
- data: caption-image-category triples $\langle c, i, C \rangle$ • CUB-justify data set
- approach:
 - S1-like agent, similar to Andreas & Klein (2016)
 - all pragmatics trained-in (like Mao et al. (2016)
 - loads of performance bells-&whistles

Western Grebe

Description: This is a large bird with a white neck and a black back in the water. Definition: The Western Grebe is has a yellow pointy beak, white neck and belly, and black back. Visual Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak and red eye.



Generating visual explanations Model architecture: overview



Hendricks et al. (2016)

Generating visual explanations Model architecture

- ▶ literal listener: pretrained LSTM classifier: $P_{L_0}(C \mid c)$
- ▶ literal speaker: pretrained NIC: $P_{S_0}(c \mid i)$
 - used to produce class labels to condition pragmatic speaker on
 - input for class C to S_1 is average of embeddings for all *i* belonging to C, produced by literal speaker
- pragmatic speaker: trained speaker module $P_{S_1}(c \mid i, C)$
 - trained to maximize objective function:

 $\log P(c \mid i, C) + \log P_{L_0}(C \mid c)$

S₀-like caption

information for L₀ about category

Hendricks et al. (2016)

Reasoning about pragmatics w/neural listeners and speakers

Andreas & Klein (2016), EMNLP

Neural-Pragmatic Natural Language Generation for contrastive image captioning

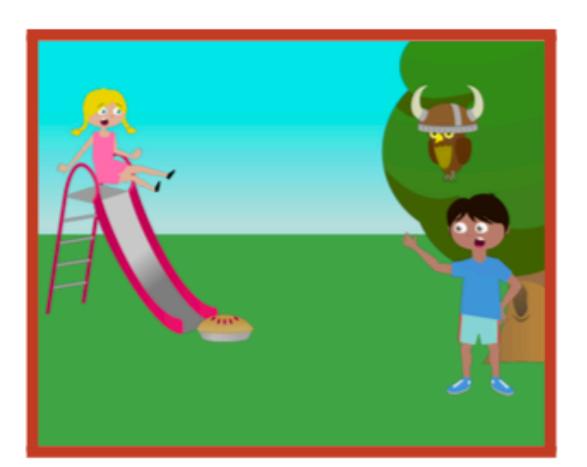
- goal: produce caption c that picks out target image i_t over distractor i_d
- data: image-caption pairs (i_t, c)
- Iiteral listener: pre-trained to maximize $P_{L_0}(i_t | i_t, i_d, c)$ for all pairs (i_t, c)
- Iiteral speaker: pre-trained to maximize $P_{S_0}(c \mid i_t)$ for all pairs (i_t, c)
- pragmatic speaker (reranker):
 - sample candidates:

$$c_1, \ldots, c_n \sim P_{S_0}(\cdot \mid i_t)$$

• score candidates:

$$S_k = P_{L_0}(i_t \mid i_t, i_d, c_k)^{1-\lambda} P_{S_0}(c \mid i_t)^{\lambda}$$

• select caption w/ max. score



(a) target

(b) distractor

the owl is sitting in the tree

Andreas & Klein (2016)

Neural-Pragmatic Natural Language Generation results

the more samples we take to score, the higher the accuracy

• accuracy deteriorates with increasing λ

pragmatic speaker models beats literal speaker baseline, and a reimplementation of the Mao et al. (2015) model

	# samples Accuracy (%)	1 66	10 75	100 83	100 85		
1 0.9	,, , ,	·					5
0.8			~		— Acc Flue	uracy ency	4.6 4.4
0.6	0 0.1	0.2	λ	0.3	0.4	4	4.2
_		Dev acc. (%)		(%)	Test acc. (%)		-
	Model	All	H	ard	All	Hard	
_	Literal (S0) Contrastive	66 71		54 54	64 69	53 58	-

83

73

81

Reasoning (S1)

Andreas & Klein (2016)

68

Pragmatically Informative Image Captioning with Character-Level Inference

Cohn-Gordon, Goodman & Potts (2018), NAACL

Incremental neural RSA model architecture

- goal: produce caption c that singles out the target image i_t given a distractor set
- data: image-caption pairs (i_t, c)
- Iiteral speaker: pre-trained NIC $P_{S_0}(w_{1:n} \mid i)$ [neural network]
- L1-listener: Bayes rule w/ partial captions $P_{L_1}(i \mid w_{1:n}) \propto P_{S_0}(w_{1:n} \mid i) \quad \text{[uniform priors]}$
- pragmatic speaker (incremental RSA): $P_{S_2}(w_{n+1} \mid i, w_{1:n}) \propto P_{L_1}(i \mid w_{1:(n+1)})^{\alpha} P_{S_0}(w_{1:(n+1)} \mid i)$
- granularity:
 - word-level: each w_n is a full word
 - character-level: each w_n is a single character

S₀ caption: a double decker bus S₂ caption: a red double decker bus

Cohn-Gordon, Goodman & Potts (2018)

Excursion formal details of incremental RSA

$$\begin{split} P_{L_1}(i \mid w_{1:n}) &= \frac{P(i) \mid P_{S_0}(w_{1:n} \mid i)}{\sum_j P(j) \mid P_{S_0}(w_{1:n} \mid j)} \\ &= \frac{P(i) \mid P_{S_0}(w_{1:(n-1)} \mid i) \mid P_{S_0}(w_n \mid w_{1:(n-1)}, i)}{\sum_j P(j) \mid P_{S_0}(w_{1:(n-1)} \mid j) \mid P_{S_0}(w_n \mid w_{1:(n-1)}, j)} \\ &= \frac{\frac{1}{C}P(i) \mid P_{S_0}(w_{1:(n-1)} \mid i) \mid P_{S_0}(w_n \mid w_{1:(n-1)}, i)}{\sum_j \frac{1}{C}P(j) \mid P_{S_0}(w_{1:(n-1)} \mid i) \mid P_{S_0}(w_n \mid w_{1:(n-1)}, j)} \\ &= \frac{\frac{P(i) \mid P_{S_0}(w_{1:(n-1)} \mid i)}{\sum_k P(k) \mid P_{S_0}(w_{1:(n-1)} \mid k)} \mid P_{S_0}(w_n \mid w_{1:(n-1)}, i)}{\sum_j \frac{P(j) \mid P_{S_0}(w_{1:(n-1)} \mid k)}{\sum_j \frac{P(j) \mid P_{S_0}(w_{1:(n-1)} \mid k)}{\sum_j P(j \mid w_{1:(n-1)}) \mid P_{S_0}(w_n \mid w_{1:(n-1)}, j)}} \\ &= \frac{P(i \mid w_{1:(n-1)}) \mid P_{S_0}(w_n \mid w_{1:(n-1)}, i)}{\sum_j P(j \mid w_{1:(n-1)}) \mid P_{S_0}(w_n \mid w_{1:(n-1)}, j)} \end{split}$$

[our reformulation w/ prior]

[chain rule]

[introducing constant]

[set k to normalization term]

[formulation from the paper]

Excursion formal details of incremental RSA

$$P_{S_{2}}(w_{n+1} \mid i, w_{1:n}) \propto \exp\left(\alpha \left(\log P_{L_{1}}(i \mid w_{1:(n+1)}) - \operatorname{Cost}(w_{1:(n+1)}, i)\right)\right) \text{[vanilla RSA}$$
$$\propto P_{L_{1}}(i \mid w_{1:(n+1)})^{\alpha} \exp\left(-\operatorname{Cost}(w_{1:(n+1)}, i)\right) \qquad \text{[rules of exp}$$
$$= P_{L_{1}}(i \mid w_{1:(n+1)})^{\alpha} P_{S_{0}}(w_{1:(n+1)} \mid i) \qquad \text{[defining cost}(w_{1:(n+1)}, i) = 0)$$

Upshot:

incremental RSA is, by definition, just plan vanilla RSA (with a special interpretation of the cost term)

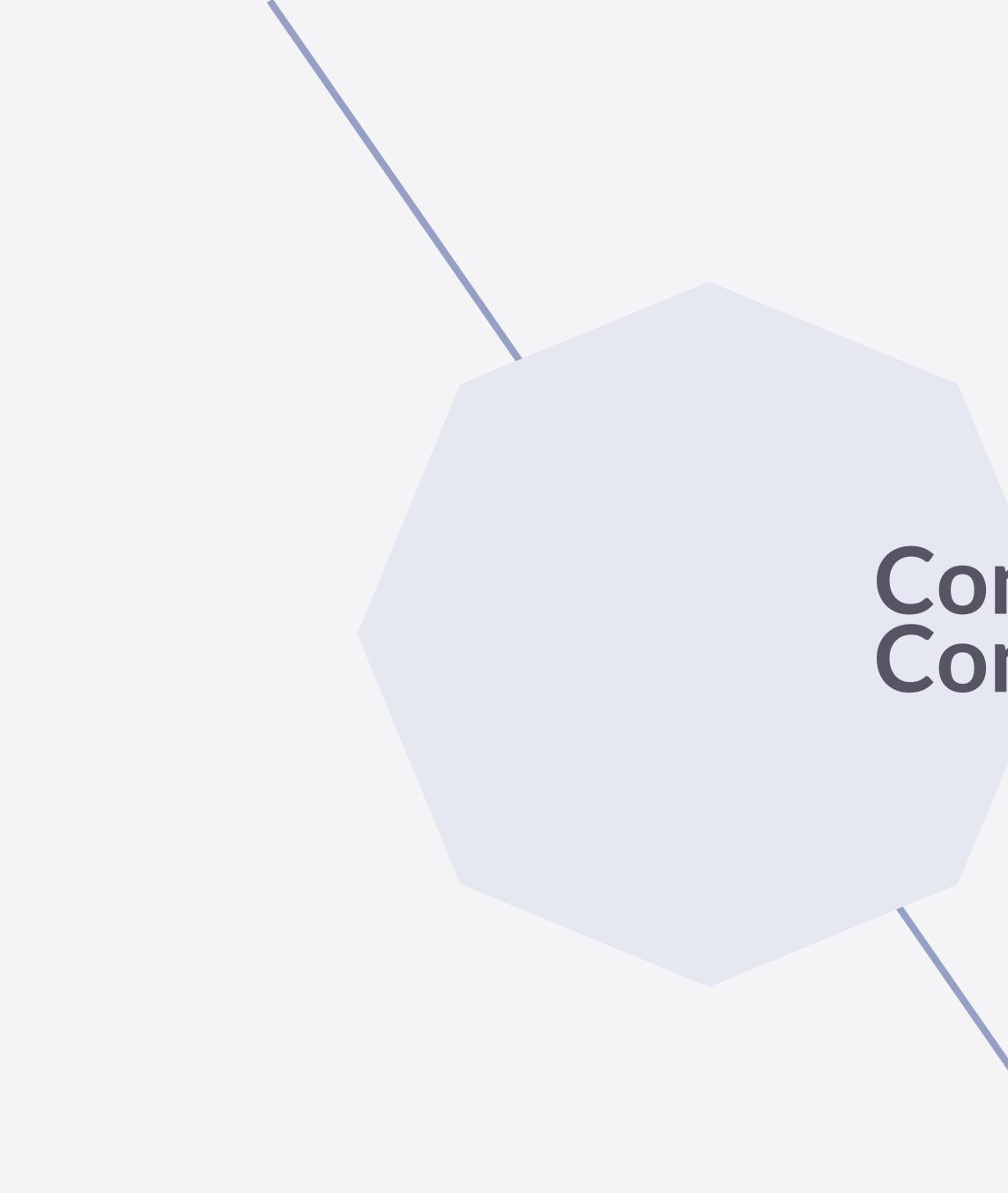
[rules of exponential function] [defining costs via S₀ production] $Cost(w_{1:n}, i) = \log P_{S_0}(w_{1:n} | i)^{-\alpha}$

Incremental neural RSA results

- compare literal and pragmatic models, for character- and word-level incremental prec
 - but table shows possibly misleading contrast
 - Char S₂ uses beam search for decoding (beam size but Word S₂ uses greedy decoding
 - with greedy decoding Char S₂ scores 61.2% on T
 - the advantage could solely come from different decoding

dictions	Model	TS1	51 TS2	
	Char S_0	48.9	47.5	
ze 10)	Char S_1	68.0	65.9	
	Word S_0	57.6	53.4	
۲S1	Word S_1	60.6	57.6	
decoding				

Cohn-Gordon, Goodman & Potts (2018)



Context-aware Captions from Context-agnostic Supervision Vedantam et al. (2017), CVPR

Emitter-Suppressor model

Task-neutral pre-trained NICs for justification & discriminative captioning

- tasks:
 - justification: describe picture by contrasting it against a **competitor** *class*
 - **discrimination**: describe picture by contrasting it against a competitor *image*
- approach:
 - task-neutral pre-trained NIC
 - novel "pragmatic beam search"
 - emitter-suppressor objective function - similar but not equivalent to an RSA S₂ model
- data sets:
 - CUB-Justify (novel)
 - extension of the CUB data set w/ new contrastive captions
 - participants described an image in contrast to six images from the contrast class
 - MS-COCO

Target Class: **Prairie Warbler**

Distractor Class: Mourning Warbler

Distractor Image:

justification

Speaker:

This bird has a yellow belly and breast with a short pointy bill.

Introspective Speaker: A small yellow bird with

black stripes on its body, and black stripe on the wings.

discrimination

Speaker:

An airplane is flying in the sky.

Introspective Speaker: A large passenger jet flying through a blue sky.

Target Image:

Vedantam et al. (2017)

Emitter-Suppressor model model architecture

- baseline models (S₀):
 - justification:

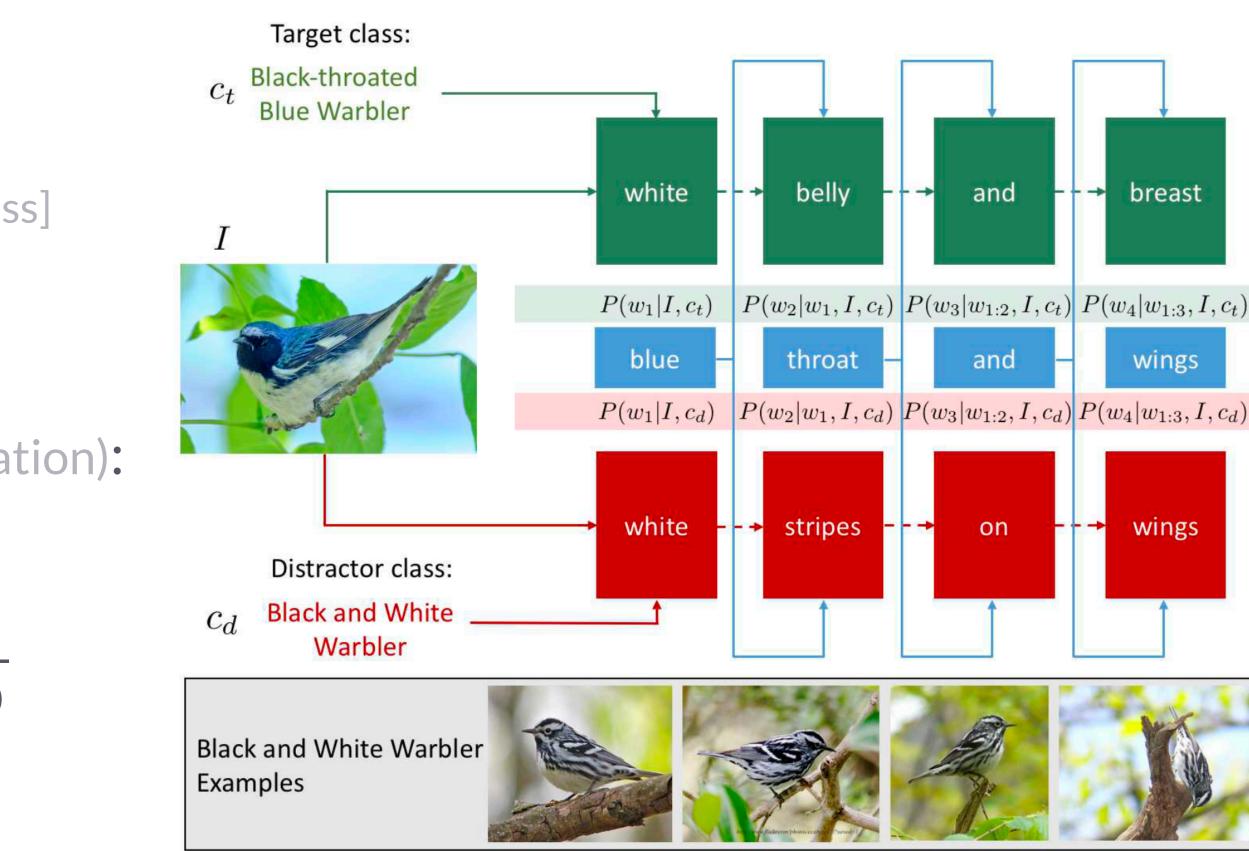
 $P_{S_0}(w_{1:n} \mid i, C_t)$ [caption given image and target class]

• discrimination:

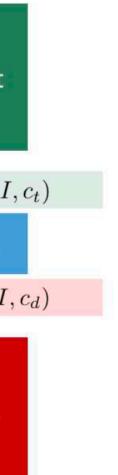
 $P_{S_0}(w_{1:n} \mid i)$ [caption given image]

- pragmatic speaker ("S₂") (here only for justification): $P_{S_2}(w_{1:n} \mid i, C_t, C_d) \propto \lambda \log P_{S_0}(w_{1:n} \mid i, C_t) +$ $(1 - \lambda) \log \frac{P_{S_0}(w_{1:n} \mid i, C_t)}{P_{S_0}(w_{1:n} \mid i, C_d)}$
- beam-search maximization:
 - score each proposed word w_{n+1} by **ES objective**:

$$\log \frac{P_{S_0}(w_{1:n} \mid i, C_t)}{P_{S_0}(w_{1:n} \mid i, C_d)^{(1-\lambda)}}$$



Vedantam et al. (2017)



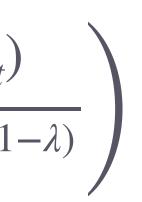
Emitter-Suppressor model relation to RSA

similar to RSA like so:

$$P_{ES}(w_{1:n} \mid i, C) = SM_{\alpha} \left(\log \frac{P_{S_0}(w_{1:n} \mid i, C_t)}{P_{S_0}(w_{1:n} \mid i, C_d)^{(1)}} \right)$$

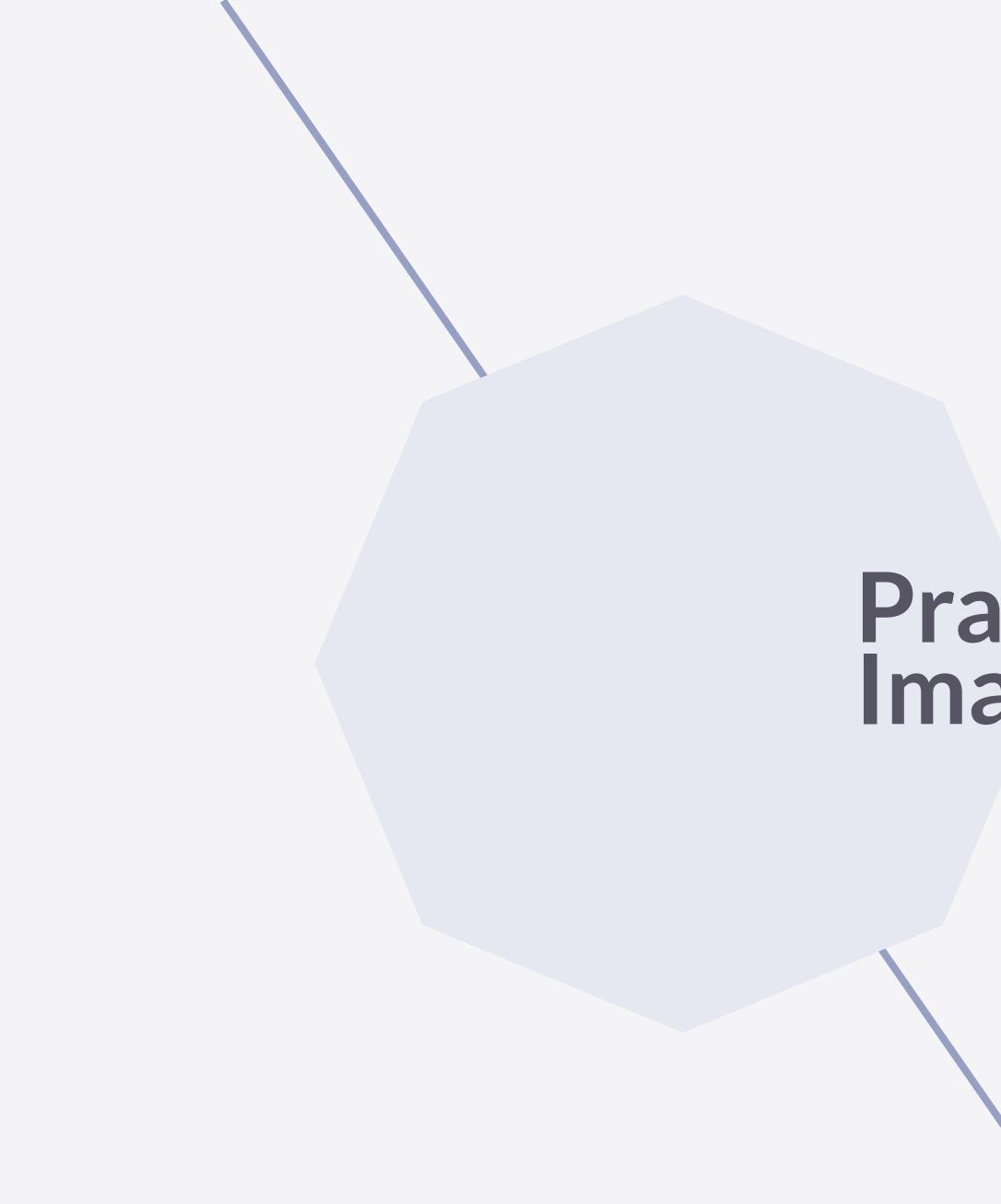
- formal results:
 - this model and a vanilla S₂ RSA speaker predict the same ordering on captions if $\alpha = 1 \& \lambda = 1$
 - predictions are still not identical for $\alpha = 1 \& \lambda = 1$
- desideratum / open question:
 - systematically investigate model differences
 - empirically test w/ human subjects

the ES-model is formulated only for maximization, but we can define a probabilistic speaker



• for other parameter settings, they are not even order equivalent (i.e., could have different arg-max values)

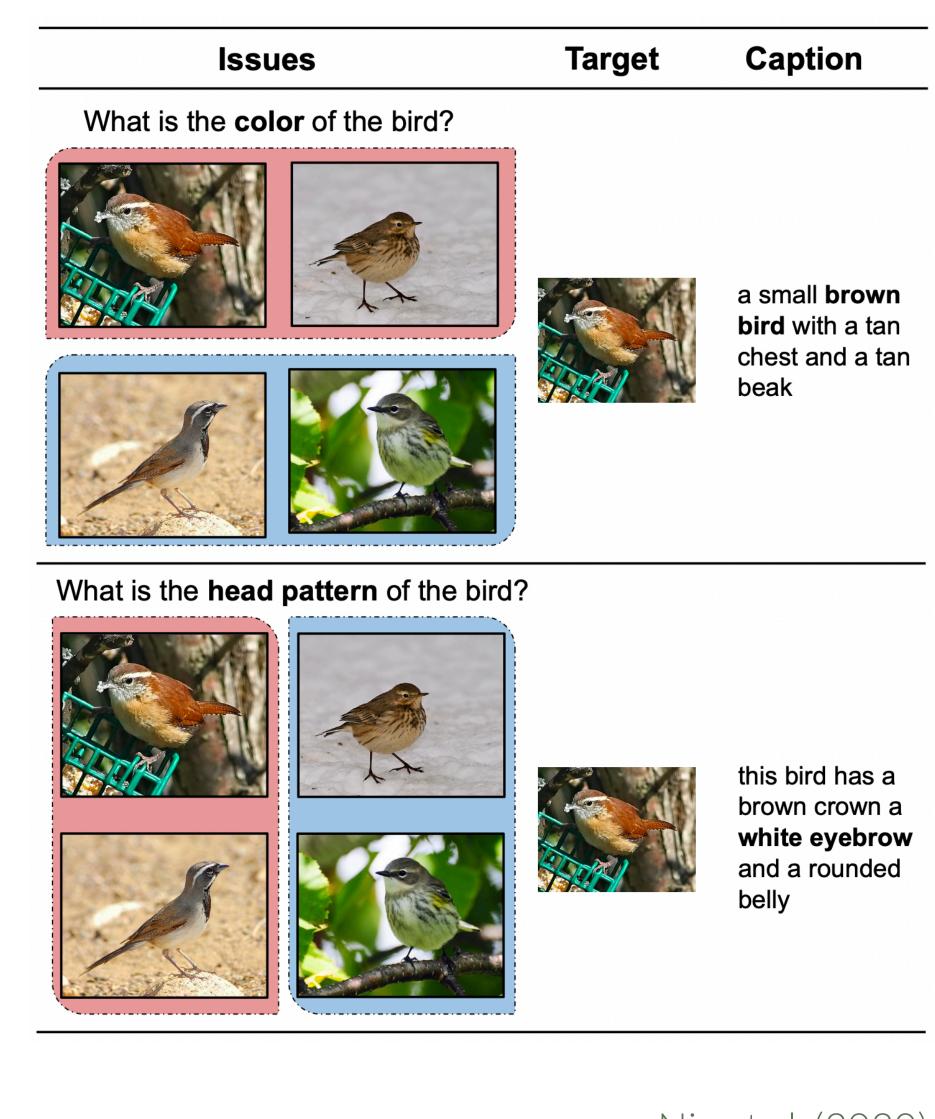
Vedantam et al. (2017)



Pragmatic Issue-Sensitive Image Captioning Nie et al. (2020), EMNLP

Pragmatic Issue-Sensitive Image Captioning goal and approach

- goal: image captions that address a topic question
 - topic question is given by a set of images
- set-up: S₀-L₁-S₂ architecture with (pragmatic) beam search, but additional utility components in S₂
 - S₀ is from Hendricks et al. (2016)
- data: CUB-captions (Reed et al. 2016)
- additionally: visual question-answering on MS-COCO



Nie et al. (2020)

Pragmatic Issue-Sensitive Image Captioning model

- data: image-caption pairs (i_t, c)
- issue: an issue C is a partition of a subset of images • C(i) is the element of C that contains i
- ► literal speaker: $P_{S_0}(c \mid i)$ pre-trained NIC [from Hendricks et al. (2016)]
- ► L1-listener: Bayes rule $P_{L_1}(i \mid c) \propto P_{S_0}(c \mid i)$ [uniform priors]
- pragmatic speakers: $P_{S_2}^X(c \mid i, C) = SM\left(U^X(i, c, C) + \log P_{S_0}(c \mid i)\right)$
- utility functions: for $X \in \{\emptyset, C, C + H\}$

$$\begin{split} U(i,c,C) &= \log P_{L_1}(i \mid c) \\ U^C(i,c,C) &= \log P_{L_1} \left(C(i) \mid c \right) \\ U^{C+H}(i,c,C) &= \beta U^C(i,c,C) + (1-\beta) \mathcal{H} \left(C(i) \mid c \right) \end{split}$$

 $\left(P_{L_1}\left(\cdot \mid C(i), c\right)\right)$

Nie et al. (2020)

Pragmatic Issue-Sensitive Image Captioning evaluation & results

- automatic assessment of pragmatic adequacy
- human evaluation:
 - 105 participants from MTurk; 13 trials each
 - trials consisted of 110 images and model generations for these

Question: What is the beak shape?

Caption: this is a white bird with black feet and a pointy downward beak

Select the answer conveyed by the caption, or indicate that the caption doesn't provide an answer:

O curved_(up_or_down)

 \bigcirc dagger

Ohooked

O hooked_seabird

○ spatulate

○ all-purpose

 \bigcirc cone

○ specialized

O The caption answers the question, but not with one of the above options.

 \bigcirc The caption does not contain an answer to the question

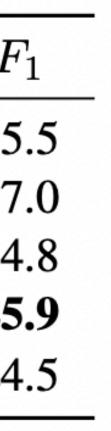
% or humans considering the issue resolved

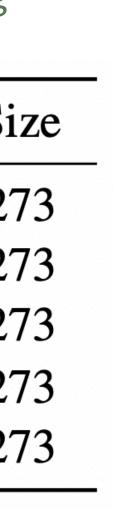
no irrelevant

features?

	Caption Source	Percentage	Si
	S_0	20.9	27
	S_1	24.5	27
	$S_1^{\mathbf{C}} \\ S_1^{\mathbf{C}+H} \\ S_1^{\mathbf{C}+H}$	42.1	27
	$S_1^{\mathbf{C}+H}$	44.0	2
training data	Human	33.3	2

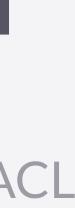
	Precision	Recall	F
S_0	10.5	21.1	15
S_0 Avg	12.1	29.0	17
S_1	11.2	21.7	14
$S_1^{\mathbf{C}}$	18.7	42.5	25
$S_1^{\mathbf{ar{C}}+H}$	16.6	46.6	24





Multi-agent Communication meets Natural Language

Lazaridou, Potapenko & Tieleman (2020), ACL



Fine-tuning from self-play

Multi-Agent Communication meets Natural Language

- goal: task-specific fine-tuning via self-play in multiagent communication games
- ► set-up:
 - speaker: pre-trained NIC $P_{S_0}(c \mid i)$
 - listener: pretrained image picker: $P_{L_0}(i_t, i_d \mid c)$
 - self-play reference game:
 - speaker and listener repeatedly play reference game
 - update behavioral policies based on success/failure in each round
- different architectures for self-play & update
 - functional or structural learning only
 - both functional & structural learning:
 - fine-tuning via reinforcement learning of S₀ and/or R₀
 - RL-based policy learning for scoring samples from S₀
- problem: language drift
 - evolving language is "intelligible" only to the agents

Target Image

Distractor Image

Structural-only learning

image captioning $(\S4.2)$ **jenny** is wearing a hat sample mike is wearing a hat greedy

Structural and functional learning

Gradients from reward affect base captioning model reward finetuning ($\S4.3.1$) no KL-term it is camping **camping** [...] camping with KL-term mike is sitting on the tent multi-task learning (§4.3.2) mike is jenny on the the tent $\lambda_s = 0.1$ mike is sitting on the ground $\lambda_s = 1$ *Reranking* (§4.3.3), *base captioning model unchanged* PoE, $\lambda_s = 0$ the tent is in the tree mike and jenny are sitting on the ground PoE, $\lambda_s = 1$ jenny is wearing a **funny hat** noisy channel

Data Sets

MSCOCO large data set w/ images, captions & labelled-objects

- > 300k images with:
 - captions
 - bounding boxes for 80 objects w/ labels - things (concrete objects) and stuff (background elements)
- URL: <u>https://cocodataset.org</u>

|--|

two giraffes in a patch of dirt with zebras behind them. two giraffes standing together outside in open area. two giraffes walking on the dry ground near a bush two giraffes walking together in the pen at the zoo. two giraffe are standing in front of some zebras in a zoo.

Yin et al. (2014), "Microsoft COCO: Common Objects in Context", ECCV

Google Refexp

referential expressions for objects in MS-COCO images

- subset of images from MS-COCO w/ additional referential expressions for objects in the images
- > 26k images with 54k target objects
 - each object types occurs 2-4 times in the picture
 - all objects of that type are sufficiently salient
 - bounding boxes and labels for objects (from MS-COCO)

~1.9 referential expressions per target object

- obtained from MTurk human annotation
 - human producer types referential expression E
 - human interpreter tries to identify target object based on E
 - if successful E is added to data set, if not discarded

URL: <u>Google Refexp</u>

The black and yellow backpack sitting on top of a suitcase.

A yellow and black back pack sitting on top of a blue suitcase.

An apple desktop computer.

The white IMac computer that is also turned on.

Mao et al. (2016) "Generation and Comprehension of Unambiguous Object Descriptions", CVPR

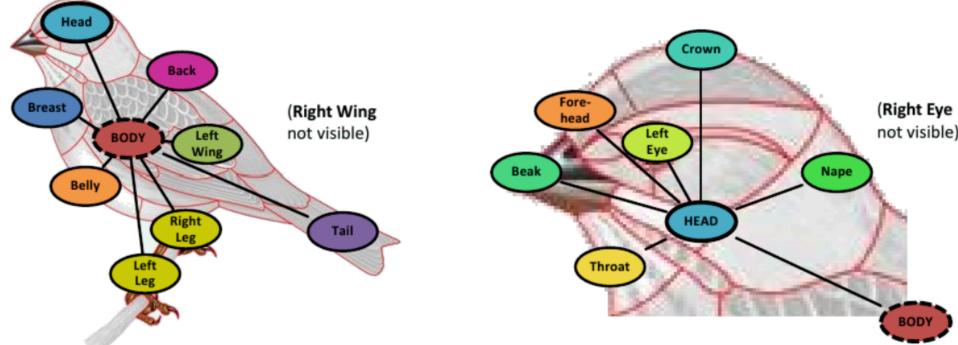
Caltech-UCSD Birds w/ captions and justifications

- original CUB
 - ~11.8k images of 200 bird species
 - taxonomic information: order, family, genus, species
 - 312 binary attributes (e.g., bill shape)
 - bounding boxes, attributes & part locations
- CUB-captions extension (Reed et al. 2016)
 - five captions per picture
 - human captioners did not have access to attribute info

CUB-justify extension (Vedantam et al. 2017)

- obtained from MTurk human annotation
 - human producer types description of a target image from class X in contrast to six images from competitor category Y

URLs: <u>CUB</u>, <u>CUB-caption</u>, <u>CUB-justify</u>



Part	Attributes	Part	Attributes	Part	Attributes
Beak	HasBillShape, HasBillColor , HasBillLength	Back	HasBackColor, HasBackPattern	Breast	HasBreastPatt HasBreastColo
Belly	HasBellyPattern, HasBellyColor	Fore- head	HasForehead Color	Bird (all parts)	HasSize, HasSl
Throat	HasThroatColor	Nape	HasNapeColor	Head	HasHeadPatte
Crown	HasCrownColor	Eye	HasEyeColor	Leg	HasLegColor
Tail	HasUpperTailColor, HasUnderTailColor, HasTailPattern, HasTailShape	Wing	HasWingPattern, Has WingColor, HasWingShape	Body	HasUnderpart HasUpperPart HasPrimaryCo

Attribute Annotation

Has_Bill_Shape::All-purpose Has_Wing_Color::Brown Has_Wing_Color::Rufous Has_Back_Color::Brown Has_Head_Pattern::Eyebrow Has_Size::Small

Wah et al. (2011) "Caltech-UCSD Birds-200-2011", technical report

Abstract scenes

- 10k synthetic images w/ ~ 6 captions per image
- generation procedure:
 - original scenes: ~1k scenes with 10 descriptions each:
 - based on 80 pieces of clip art
 - first set of human participants instructed to "create an illustration" for a children's story book by creating a realistic scene from the clip art"
 - second set of participants created one description for each scene
 - similar scenes:
 - for each written description humans created 10 scenes (see pic)
 - additional labels:
 - human annotators provide ~6 description for each of the resulting 10k scenes
- URL: <u>Abstract Scenes</u>

Figure 1. An example set of semantically similar scenes created by human subjects for the same given sentence.

Zitnick et al. (2013) "Bringing Semantics Into Focus Using Visual Attention", CVPR

