Neural-Pragmatic Natural **J**<u>a</u><u></u> Generation |

Learning goals

- 1. understand basic architectures for grounded LMs a. focus on neural image captioning
- 2. critically assess research papers on (grounded) LMs
- 3. interpret and apply common evaluation metrics

Examples of automatically generated image captions

arranged by human evaluation scores

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

Describes without errors

Describes with minor errors

Vinyals et al. (2015) "Show and Tell: A Neural Image Caption Generator"

Encoder-decoder architectures for grounded language modeling

- training data: pairs $\langle i, c \rangle$ of image & caption
 - $C = W_1 \dots W_n$
- objective: approximate true $P(c \mid i)$
- "classical" approach:
 - image \rightarrow objects, relations \rightarrow "classical" NLP
- neural approach: encoder-decoder architecture
 - encoder: $P_{enc}(h \mid i)$
 - image embedding (RNN, CNN, ...)
 - decoder: $P_{dec}(c \mid h)$
 - (causal) language model (RNN, LSTM, ...)

Where to supply the encoding? initially or repeatedly

repeated supply

"Show & Tell: A Neural Image Caption Generator" Vinyals et al. (2015)

Neural Caption Generator Vinyals et al. (2015)

- encoder:
 - CNN
 - pretrained on ImageNet
- decoder:
 - LSTM, (hidden layer size: 512)
 - initialized with random embeddings
- decoding strategies:
 - pure sampling
 - beam search (beam size 20)
- training specs:
 - objective function: surprisal $-\log P(c \mid i) = -\sum \log(w_{i+1} \mid w_{1:i}, c)$
 - vanilla gradient descent

initial supply of image embedding

Dataset name	size		
	train	valid.	test
Pascal VOC 2008 [6]	-	-	1000
Flickr8k [26]	6000	1000	1000
Flickr30k [33]	28000	1000	1000
MSCOCO [20]	82783	40504	40775
SBU [24]	1M	-	-

data sets & their split sizes

Human Evaluation Vinyals et al. (2015)

- each image rated by two human rater
- scale from 1 to 4
- images paired with model-generated captions or a ground-truth caption from the data set

Evaluation metrics Vinyals et al. (2015)

- perplexity
 - used only for model comparison and tracking training progress
- ► BLEU-n
 - co-occurrence on n-grams between generated and reference sequences (Papineni et al., 2002)
 - correlates well with human quality judgements
 - easy to compute but may depend on tokenizer (what counts as a word)

METEOR

- based on harmonic mean of unigram precision and recall (Banerjee & Lavie 2005)
- intended as improvement over BLEU
- matching target and output via exact matching, synonymy, stem-identity ...

Metric	BLEU-4	METEOR	CIDER	
NIC	27.7	23.7	85.5	
Random	4.6	9.0	5.1	
Nearest Neighbor	9.9	15.7	36.5	
Human	21.7	25.2	85.4	
Table 1. Scores on the MSCOCO development set.				

CIDER

- specific to image captioning (Vedantam 2014)
- score each caption to set of ground-truth reference captions
- use only stem/root forms
- score based on:
 - how often n-gram is present in reference set
 - how often it occurs in any other reference set

