Neural-Pragmatic Natural **J**<u>a</u><u>a</u> Generation |

Learning goals

1. understand motivation and basic architecture of transformer based LLMs

- a. self-attention & transformer blocks
- b. heads and layers
- c. positional encodings
- d. uni-vs bidirectional architectures
- 2. become acquainted with using the 'transformers' package to access pre-trained LLMs

self-attention networks (transformers)

RNN

Transformer left-to-right architecture

. . .

Transformer blocks

• layer normalization: LayerNorm(x) = γ z-score(x) + β z-score(x) = $\frac{x - mean(x)}{SD(x)}$

- residual connection
 - facilitates learning
- self-attention layer
 - key novel innovation

Self-attention layer

output

$$\mathbf{y}_i = \sum_{j \le i} \alpha_{ij} \mathbf{v}_j$$

weight score

$$\alpha_{i,j} = \frac{\exp(\mathbf{q}_i \cdot \mathbf{k}_j)}{\sum_{j' \le i} \exp(\mathbf{q}_i \cdot \mathbf{k}_{j'})}$$

- three vectors for each input vector x_i
 - 1. query: which info to extract from context $\mathbf{q}_i = \mathbf{W}^Q \mathbf{x}_i$
 - 2. key: which info to provide for later

$$\mathbf{k}_i = \mathbf{W}^K \mathbf{x}_i$$

3. value: what output to choose

$$\mathbf{v}_i = \mathbf{W}^V \mathbf{x}_i$$
 key,

Vaswani et al. (2017)

Multihead attention layer

Positional encoding

$$ec{p}_t = egin{bmatrix} \sin(\omega_1.\,t)\ \cos(\omega_1.\,t)\ \sin(\omega_2.\,t)\ \cos(\omega_2.\,t)\ ec{cos}(\omega_2.\,t)\ ec{l}\ ec{$$

Transformer language model

bidirectional encoding with transformers

Transformer left-to-right architecture

computation for input $\mathbf{x}_1, \ldots, \mathbf{x}_3$ blind to \mathbf{x}_4 and \mathbf{x}_5

 \mathbf{y}_5 is embedding for input $\mathbf{x}_1, \dots, \mathbf{x}_5$ **y**₅ is a "left-contextual embedding"

Bidirectional Encoder Representations from Transformers (BERT) large bi-directional LLM

- various levels of input embeddings
 - token
 - segment
 - position
- architecture:
 - 12 layers of transformer blocks
 - 12 multihead attention layers each
 - hidden layer size 768
 - subword vocabulary size 30k
 - total of ca. 100 million parameters
- originally trained on 3.3 billion words
 - combined training regime for masked LM & nextsentence prediction

Devlin et al. (2019)

Masked language modeling training

- 15% of input tokens sampled for learning, of these:
 - 80% are masked
 - 10% replaced w/ random tokens
 - 10% left unchanged

CE Loss

Softmax over Vocabulary

Token + Positional Embeddings

Bidirectional Transformer Encoder

Devlin et al. (2019)

large language models

Large language models different architectures for different purposes

Examples	Tasks
ALBERT, BERT, DistilBERT, ELECTRA, RoBERTa	Senten answer
CTRL, GPT, GPT-2, Transformer XL	Text ge
BART, T5, Marian, mBART	Summa

nce classification, named entity recognition, extractive question ring

eneration

arization, translation, generative question answering

Training set sizes

Costs of LLMs

Common carbon footprint benchmarks

in lbs of CO2 equivalent

The estimated costs of training a model

	Date of original paper	Energy consumption (kWh)	Carbon footprint (Ibs of CO2e)	Cloud compute cost (USD)
Transformer (65M parameters)	Jun, 2017	27	26	\$41-\$140
Transformer (213M parameters)	Jun, 2017	201	192	\$289-\$981
ELMo	Feb, 2018	275	262	\$433-\$1,472
BERT (110M parameters)	Oct, 2018	1,507	1,438	\$3,751-\$12,571
Transformer (213M parameters) w/ neural architecture search	Jan, 2019	656,347	626,155	\$942,973-\$3,201,722
GPT-2	Feb, 2019	-	-	\$12,902-\$43,008

Risks of LLMs stereotypes, bias, toxicity ...

Hey, cool! ChatGPT can write Python code for real-life problems!

Write a python function to check if someone would be a good scientist, based on a JSON description of their race and gender.

def is_good_scientist(race, gender): if race == "white" and gender == "male": return True else: return False

