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Learning goals

1. understand basic architecture of LSTMs 

2. understand how LSTMs improve on RNNs 

3. become able to use PyTorch’s built-in modules for LMs 

4. implement a character-level LSTM 

5. learn about different decoding schemes 
a. pure & greedy sampling 

b.top-k & top-p sampling 

c. softmax sampling 

d.beam search 

6. learn about different training regimes 
a. autoregressive training 

b.teacher forcing 

c. curriculum learning 

d.professor forcing



RNNs revisited



RNN-based language model
hidden layer as a “memory state”

‣ hidden layer is a “memory state” 

‣ predictions (at each token) are derived from the 
hidden layer 
• next-word prediction 
• part-of-speech prediction 
• sentiment analysis  
• … 



Different kinds of sequence processing models
sequence as input and/or (simultaneous) output



Stacked RNNs
multiple layers



Problems with RNNs

‣ conceptual problem 
• two-fold role of hidden state: 

- memory for past sequence 
- recommend what to do now 

‣ technical problem 
• vanishing gradients for long past input 

- partial remedy: bidirectional RNNs 



Long-Short Term Memory 
(LSTM) Models



Modular architectures

‣ common mapping 
• input to hidden state:  

- variously referred to as encoding or embedding 

x ↦ h

cells / units

MLP RNN LSTM



LSTM cell

forget gate

input gate

output gate



Decoding schemes



Decoding schemes

‣ pure sampling 
• next word is sampled from next-word probability distribution:  

‣ greedy decoding 
• next word is word with highest probability:  

‣ softmax sampling 
• next word is sampled from softmax of next-word probability distribution:  

‣ top-k sampling 
• next word is sampled from next-word prob. distribution after restricting to the  most likely words 

‣ top-p sampling 
• next word is sampled from next-word prob. distribution after restricting to the smallest set of the most likely 

words which together comprise at least next-word probability  

‣ beam search 
• see blackboard

𝗐𝗂+𝟣 ∼ 𝖯( ⋅ ∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 = arg max𝗐′ 
𝖯(𝗐′ ∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 ∼ 𝖲𝖬α (𝖯( ⋅ ∣ 𝗐𝟣:𝗂))

𝗄

𝗉

based on next-word probability 𝖯(𝗐𝗂+𝟣 ∣ 𝗐𝟣:𝗂)



Training regimes for LMs



Training regimes

‣ teacher forcing 
• LM is fed true word sequence 
• training signal is next-word assigned to true word 

‣ autoregressive training (aka free-running mode) 
• LM autoregressively generates a sequence 
• training signal is next-word probability assigned to true word 

‣ curriculum learning (aka scheduled sampling) 
• combine teacher-forced and autoregressive training 
• start with mostly teacher forcing, then increase amount of autoregressive training 

‣ professor forcing 
• combines teacher forcing with adversarial training 
• generative adversarial network GAN is trained to discriminate (autoregressive) predictions from actual data 
• LM is trained to minimized this discriminability 

‣ decoding-based 
• use prediction function (decoding scheme) to optimize based on actual output


