
Generation
Language

Neura l · Pragmat i c
Natural

Learning goals

1. understand basic architecture of LSTMs

2. understand how LSTMs improve on RNNs

3. become able to use PyTorch’s built-in modules for LMs

4. implement a character-level LSTM

5. learn about different decoding schemes

a. pure & greedy sampling

b.top-k & top-p sampling

c. softmax sampling

d.beam search

6. learn about different training regimes

a. autoregressive training

b.teacher forcing

c. curriculum learning

d.professor forcing

RNNs revisited

RNN-based language model
hidden layer as a “memory state”

‣ hidden layer is a “memory state”

‣ predictions (at each token) are derived from the
hidden layer

• next-word prediction

• part-of-speech prediction

• sentiment analysis

• …

Different kinds of sequence processing models
sequence as input and/or (simultaneous) output

Stacked RNNs
multiple layers

Problems with RNNs

‣ conceptual problem

• two-fold role of hidden state:

- memory for past sequence

- recommend what to do now

‣ technical problem

• vanishing gradients for long past input

- partial remedy: bidirectional RNNs

Long-Short Term Memory
(LSTM) Models

Modular architectures

‣ common mapping

• input to hidden state:

- variously referred to as encoding or embedding

x ↦ h

cells / units

MLP RNN LSTM

LSTM cell

forget gate

input gate

output gate

Decoding schemes

Decoding schemes

‣ pure sampling

• next word is sampled from next-word probability distribution:

‣ greedy decoding

• next word is word with highest probability:

‣ softmax sampling

• next word is sampled from softmax of next-word probability distribution:

‣ top-k sampling

• next word is sampled from next-word prob. distribution after restricting to the most likely words

‣ top-p sampling

• next word is sampled from next-word prob. distribution after restricting to the smallest set of the most likely

words which together comprise at least next-word probability

‣ beam search

• see blackboard

𝗐𝗂+𝟣 ∼ 𝖯(⋅ ∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 = arg max𝗐′￼
𝖯(𝗐′￼∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 ∼ 𝖲𝖬α (𝖯(⋅ ∣ 𝗐𝟣:𝗂))

𝗄

𝗉

based on next-word probability 𝖯(𝗐𝗂+𝟣 ∣ 𝗐𝟣:𝗂)

Training regimes for LMs

Training regimes

‣ teacher forcing

• LM is fed true word sequence

• training signal is next-word assigned to true word

‣ autoregressive training (aka free-running mode)

• LM autoregressively generates a sequence

• training signal is next-word probability assigned to true word

‣ curriculum learning (aka scheduled sampling)

• combine teacher-forced and autoregressive training

• start with mostly teacher forcing, then increase amount of autoregressive training

‣ professor forcing

• combines teacher forcing with adversarial training

• generative adversarial network GAN is trained to discriminate (autoregressive) predictions from actual data

• LM is trained to minimized this discriminability

‣ decoding-based

• use prediction function (decoding scheme) to optimize based on actual output

