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Learning goals

1. understand basic architecture of LSTMs


2. understand how LSTMs improve on RNNs


3. become able to use PyTorch’s built-in modules for LMs


4. implement a character-level LSTM


5. learn about different decoding schemes

a. pure & greedy sampling


b.top-k & top-p sampling


c. softmax sampling


d.beam search


6. learn about different training regimes

a. autoregressive training


b.teacher forcing


c. curriculum learning


d.professor forcing



RNNs revisited



RNN-based language model
hidden layer as a “memory state”

‣ hidden layer is a “memory state”


‣ predictions (at each token) are derived from the 
hidden layer

• next-word prediction

• part-of-speech prediction

• sentiment analysis 

• … 



Different kinds of sequence processing models
sequence as input and/or (simultaneous) output



Stacked RNNs
multiple layers



Problems with RNNs

‣ conceptual problem

• two-fold role of hidden state:


- memory for past sequence

- recommend what to do now


‣ technical problem

• vanishing gradients for long past input


- partial remedy: bidirectional RNNs




Long-Short Term Memory 
(LSTM) Models



Modular architectures

‣ common mapping

• input to hidden state: 


- variously referred to as encoding or embedding


x ↦ h

cells / units

MLP RNN LSTM



LSTM cell

forget gate

input gate

output gate



Decoding schemes



Decoding schemes

‣ pure sampling

• next word is sampled from next-word probability distribution: 


‣ greedy decoding

• next word is word with highest probability: 


‣ softmax sampling

• next word is sampled from softmax of next-word probability distribution: 


‣ top-k sampling

• next word is sampled from next-word prob. distribution after restricting to the  most likely words


‣ top-p sampling

• next word is sampled from next-word prob. distribution after restricting to the smallest set of the most likely 

words which together comprise at least next-word probability 


‣ beam search

• see blackboard

𝗐𝗂+𝟣 ∼ 𝖯( ⋅ ∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 = arg max𝗐′￼
𝖯(𝗐′￼∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 ∼ 𝖲𝖬α (𝖯( ⋅ ∣ 𝗐𝟣:𝗂))

𝗄

𝗉

based on next-word probability 𝖯(𝗐𝗂+𝟣 ∣ 𝗐𝟣:𝗂)



Training regimes for LMs



Training regimes

‣ teacher forcing

• LM is fed true word sequence

• training signal is next-word assigned to true word


‣ autoregressive training (aka free-running mode)

• LM autoregressively generates a sequence

• training signal is next-word probability assigned to true word


‣ curriculum learning (aka scheduled sampling)

• combine teacher-forced and autoregressive training

• start with mostly teacher forcing, then increase amount of autoregressive training


‣ professor forcing

• combines teacher forcing with adversarial training

• generative adversarial network GAN is trained to discriminate (autoregressive) predictions from actual data

• LM is trained to minimized this discriminability


‣ decoding-based

• use prediction function (decoding scheme) to optimize based on actual output


