Neural-Pragmatic

Natural

B NG
age

Generation

Learning goals

1. become familiar with language modeling
a.causal (left-to-right) models

b.training, prediction, evaluation

7. meet a first neural LM: recurrent neural networks

3. Implementing a character-level RNN

a.loss function & training regime
b.predictions & decoding strategy

language modeling

Language mode]
high-level definition

» let 77 be a (finite) vocabulary, a set of words
- we say ‘words” but these can be characters, sub-words, units ...

» letw,., = (wy, ..., w,) be afinite sequence of words

» let S be athe set of all (finite) sequences of words

» let X be asetof input conditions
e .2, Images, text in a different language ...

» alanguage model LM is function that assigns to each input X a
probability distribution over S:
LM : X A(S)
o Ifthereisonly oneinputinset X, the LM isjust a probability distribution
over all sequences of words

e an LM Is meant to capture the true relative frequency of occurrence
e aneural language model is an LM realized as a neural network
e In the following we skip the dependence on X

Language mode]
left-to-right / causal model

» acausal language model is defined as a function that maps
an initial sequence of words to a probability distribution
overwords: LM : wy., — A(7)

« we write Py, (w, .1 | wy.,) for the next-word probability

o the surprisal of w, | after sequence wy.,, is
—log (P L (W1 | Wl:n))
» the sequence probability follows from the chain rule:
Pry(wy.,) = H?zlp (Wi | wyip)
» measures of goodness of fit for observed sequence wy.,:
« perplexity:

_1
PPLM(WI:n) — PLM(WI:n) ! lOg PPM(Wln) —
e average surprisal:

Avg-Surprisal, (w;.,)

Avg—SurprisalLM(wlzn) = — % log Py, (wy.,,)

recurrent neural networks

Recurrent neural networks

C Yo
\ v
h,

w

§ X9

RNN-based language model

one of many similar architectures

» dimensions: » definition (forward pass):
* ny, . # of words in vocabulary *x, = Ew,
-, - # units in hidden layer +h, = f[Uh, + Wx]
- n.: length of input x (word embedding) -y, = softmax(Vh)
» what is what? (\ 13 /)
- w, € R™:one-hot vector representing word w, (= Y T
« X, € R":word embedding of word w, \ v U w
- h, € R": hidden layer activation at time ¢ (with h, = 0) G T e T WO N G e
« y, € A(7'): probability distribution over words \M / E \
- fe {o,tanh,...}:activation function (as usual) - : / : \) :
- U e R™: mapping hidden-to-hidden = = : Wy
« V € R : mapping hidden-to-word / E \
- E € R™: mapping word-to-embedding "

- W e R : mapping embedding-to-hidden
based on Jurafsky & Martin “NLP” book draft

training & Inference for
causal LMs

Training RNNs

using teacher forcing & next-word surprisal

» teacher forcing

 predict each next word given the
oreceding input (not the model-
ogenerated sequence)

» next-work surprisal
* loss function is (average) next-word

Next word Ing arl1d tthS fl)r alll
Loss = 10% Yiong| [~ 10g Yand| [log Yuhanks | [— log Yror | [— logAg Yall |
Yy

(ol)

Softmax over

(ol)
T

surprisal Vocabulary ;3
« NB: surprisal = cross-entropy If RNN
training item is non-stochastic
Input o @
Embeddings

So

@@ e
T T !

long

> > >

and thanks for

Autoregressive generation

-~

7

Sampled Word So Iong

Lo

Softmax (Diﬂjnu) [[HJL]:D)

RNN >
@)
Embedding %
Input Word <S> 480
/
/

S __cee

\‘_

Plain causal LMs in a nutshel Dirty reality

» definition » definition
e seguence probabilities given by product of e usually only implicit, often unclear
next-word probabilities e task-dependent
» training » training
e Minimize next-word surprisal e usually based on next-word surprisal
» prediction e other (mixed) exist
e sample auto regressively, using next-word » prediction
probabilities » whole battery of
» evaluation » evaluation
* perplexity or average surprisal » baseline: perplexity or average surprisal
» consistent def-train-pred-eval scheme * additional measure of text quality

» possibly inconsistent

Custom RNN

class RNN(nn.Module):

def

def

def

__init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(n_categories + input_size + hidden_size,
hidden_size)
self.i20 = nn.Linear(n_categories + input_size + hidden_size,
output_size)
nn.Linear(hidden_size + output_size,
output_size)
nn.Dropout(0.1)
nn.LogSoftmax(dim=1)

self.o020

self.dropout =
self.softmax =
forward(self, category, input, hidden):

input_combined = torch.cat((category, input, hidden), 1)
hidden = self.i2h(input_combined)

output = self.i2o0(input_combined)

output_combined = torch.cat((hidden, output), 1)

output = self.o2o0(output_combined)
output = self.dropout(output)
output = self.softmax(output)

return output, hidden

initHidden(self):
return torch.zeros(1l, self.hidden_size)

