
Generation
Language

Neura l · Pragmat i c
Natural

Learning goals

1. Become familiar with ANNs:

a. mathematical notation in matrix-vector form

b. weights & biases (slopes & intercepts), score, activation

function, hidden layers, prediction

2. Be able to use PyTorch to implement a feed-forward ANN:

a. building the model by hand

b. using built-in helper functions (nn.Module, DataLoader …)

▸ input vector:

▸ weight vector:

▸ bias:

▸ score:

▸ activation level:

, where is the activation function

x = [x1, …, xn]T

w = [w1, …, wn]T

b

z = b +
n

∑
j=1

wjxj = b + w ⋅ x

a = f(z) f

Units (neurons)

Common activation functions

▸ perceptron:

▸ sigmoid:

▸ hyperbolic tangent:

▸ rectified linear unit:

f(z) = δz>0

f(z) = σ(z) =
1

1 + exp(−z)

f(z) = tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

f(z) = ReLU(z) = max(z,0)

Recap: Matrix Multiplication

W32

W21

Feedforward neural network (one hidden layer)

▸ input:

▸ weight matrix:

▸ bias vector:

▸ activation vector hidden layer:

, with

▸ weight matrix:

▸ prediction vector:

, with

x = [x1, …, xnx
]T

W ∈ ℝnk×nx

b = [b1, …, bnk
]T

h = f(Wx + b) f ∈ {σ, tanh, . . . }

U ∈ ℝny×nk

y = g(Uh) g ∈ {σ, soft-max, . . . }

▸ anchoring in input:

▸ activation at layer :

with if is a hidden
layer, or

with if is the
output layer

a[0] = x = [x1, …, xnx
]T

n
a[n] = f [n](W[n]a[n−1] + b[n])

f [n] ∈ {σ, tanh, . . . } n

f [n] ∈ {σ, soft-max, . . . } n

Feedforward neural network (hidden layer)n

