Cheat sheet linear algebra

Michael Franke

Notation & conventions

- \cdot vectors are written in bold lower-case x
- matrices are written in bold upper-case A
- use square brackets for vectors and matrices, e.g., $\mathbf{x} = [x_1, \dots, x_n]$ or

	x_1		a_{11}	a_{12}
x =	÷	$\mathbf{A} =$	$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$	a_{22}
	x_n		a_{31}	a_{32}

• an $n \times m$ matrix **A** can be written as $A = [a_{ij}] \in \mathbb{R}^{n \times m}$, or shorter as: $A \in \mathbb{R}^{n \times m}$

- the **transpose** of a matrix or vector is written as A^{T} and x^{T}
- \cdot we use **row-first**
 - · first index of a 2-D matrix is the row
 - indices for vectors give the row, so that vectors are column vectors
 - by convention, if the context is clear, we can write $\mathbf{x} = [x_1, \dots, x_n]$ to denote a column vector
 - it would be more precise to write $\mathbf{x} = [x_1, \dots, x_n]^T$ or

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Vector & matrix operations

• if $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{B} \in \mathbb{R}^{m \times o}$, the **matrix product** $AB = C \in \mathbb{R}^{n \times o}$ is defined via:

$$c_{ik} = \sum_{j} a_{ij} b_{jk}$$

• the **dot product** between equal-length vectors \mathbf{x} and \mathbf{y} is:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{y} = \sum_{i} x_{i} y_{i}$$

- vector concatenation of $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^m$ is written as $\mathbf{x} \oplus \mathbf{y} = [x_1, \dots, x_n, y_1, \dots, y_m]$
 - We can generalize this notation to many vectors: $\bigoplus_{i=1}^{n} \mathbf{x}_{i} = \mathbf{x}_{1} \oplus \cdots \oplus \mathbf{x}_{n}$

Interpretation

• think of matrix **A** with dimensions (n, m) as a **linear mapping** $f_{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^m$ from vectors of length *m* to vectors for length *n*, so that with $\mathbf{x} = [x_1, \dots, x_m]$:

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$

Vector similarity

• the **dot-product similarity** of vectors \mathbf{x} and \mathbf{y} is the dot product between the vectors:

 $DotSim(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$

• the **cosine similarity** of vectors \mathbf{x} and \mathbf{y} is the dot-product similarity adjusted for vector length:

 $CosineSim(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| ||\mathbf{y}||}$

where $\|\mathbf{x}\| = \sqrt{\sum_{i} x_{i}^{2}}$ is a measure of the length of vector \mathbf{x}