Cheat sheet linear algebra

Michael Franke

Notation \& conventions

- vectors are written in bold lower-case \mathbf{x}
- matrices are written in bold upper-case A
- use square brackets for vectors and matrices, e.g., $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]$ or

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

- an $n \times m$ matrix \mathbf{A} can be written as $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times m}$, or shorter as: $A \in \mathbb{R}^{n \times m}$
- the transpose of a matrix or vector is written as \mathbf{A}^{\top} and \mathbf{x}^{\top}
- we use row-first
- first index of a 2-D matrix is the row
- indices for vectors give the row, so that vectors are column vectors
- by convention, if the context is clear, we can write $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]$ to denote a column vector
- it would be more precise to write $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T}$ or

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Vector \& matrix operations

- if $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{B} \in \mathbb{R}^{m \times o}$, the matrix product $A B=C \in \mathbb{R}^{n \times o}$ is defined via:

$$
c_{i k}=\sum_{j} a_{i j} b_{j k}
$$

- the dot product between equal-length vectors \mathbf{x} and \mathbf{y} is:

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{\top} \mathbf{y}=\sum_{i} x_{i} y_{i}
$$

- vector concatenation of $\mathbf{x} \in \mathbb{R}^{N}$ and $\mathbf{y} \in \mathbb{R}^{m}$ is written as $\mathbf{x} \oplus \mathbf{y}=\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$
- We can generalize this notation to many vectors: $\bigoplus_{i=1}^{n} \mathbf{x}_{i}=\mathbf{x}_{1} \oplus \cdots \oplus \mathbf{x}_{n}$

Interpretation

- think of matrix \mathbf{A} with dimensions (n, m) as a linear mapping $f_{\mathbf{A}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ from vectors of length m to vectors for length n, so that with $\mathbf{x}=\left[x_{1}, \ldots, x_{m}\right]$:

$$
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}
$$

Vector similarity

- the dot-product similarity of vectors \mathbf{x} and \mathbf{y} is the dot product between the vectors:

$$
\operatorname{DotSim}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}
$$

- the cosine similarity of vectors \mathbf{x} and \mathbf{y} is the dot-product similarity adjusted for vector length:

$$
\operatorname{CosineSim}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

where $\|\mathbf{x}\|=\sqrt{\sum_{i} x_{i}^{2}}$ is a measure of the length of vector \mathbf{x}

