Neural-Pragmatic Natural **J**<u>a</u><u>a</u> Generation |

Learning goals

- 1. Understand what PyTorch is good for.
- 2. Ability to create, access and manipulate tensors.
- 3. Understand parameterized model predictions.
- 4. Understand of what 'parameter optimization' is.
- 5. Ability to use stochastic gradient descent to optimize parameters in PyTorch.

Key features

high-level framework for ML

specifically artificial neural networks

efficient tensor algebra

ability to run on GPUs etc.

pre-defined building blocks for ANNs

standard layers, data handling etc.

automatic differentiation

enables efficient optimization

Orch

Models, parameters, predictions & loss

Anatomy of a training step

1. compute predictions

what do we predict in the current state?

2. compute the loss

how good is this prediction (for the training data)?

3. backpropagate the error

in which direction would we need to change the relevant parameters to make the prediction better?

4. update the parameters

change the parameters (to a certain degree, the so-called learning rate) in the direction that should make them better

5. zero the gradients

reset the information about "which direction to tune" for the next training step

```
nTrainingSteps= 10000
for i in range(nTrainingSteps):
    pred = torch.distributions.Normal(loc=location,
                                        scale=1.0)
    loss = -torch.sum(prediction.log_prob(trainData))
    loss.backward()
    if (i+1) % 500 == 0:
        opt.step()
        opt.zero_grad()
```

