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Information content / surprisal; entropy (joint, conditional, cross);
Kullback-Leibler divergence; mutual information.

Information-theoretic notions —like entropy, Kullback-Leibler divergence or
mutual information— have many useful applications in fields like statistics,
machine learning or computational linguistics. These notions are anchored in
important mathematical results related to efficient coding of information and
communication via noisy channels. However, in order to understand which
notion to use when and why in concrete applications, this theoretical ground-
ing in deep and important, but abstract mathematical theory is not always
relevant, sometimes possibly even a distraction. For the student interested in
applications, explanations in terms of “minimal coding length” or similar can
be needlessly confusing at first. This primer therefore attempts to give a sys-
tematic overview of the most salient notions of information theory in terms of
what is arguably the pre-theoretically most intuitive perspective: vocabulary
about the subjective beliefs of agents.

1 A measure of information gained

The centerpiece of information theory is a numerical measure of the amount
of information gained, so-called information content or surprisal.

1.1 Motivation

Suppose that Jones and Smith are uncertain about the weather tomorrow at
noon. There are only three possible states of the weather X =

{
sunny,misty, rainy

}
.

Jones’ and Smith’s subjective beliefs are given in Table 1.

sunny cloudy rainy

Jones’ beliefs (PJ) 0.6 0.2 0.2
Smith’s beliefs (PS ) 0.1 0.2 0.7

Table 1: Subjective beliefs about
the weather.

The next day, Jones and Smith both observe that it is in fact sunny. Who
learns more? Who is more surprised by this turn of events? — Intuitively,
Smith learns more from the observation of sunny weather (is more surprised
by it) than Jones, because Jones had deemed sunny weather rather likely,
while Smith had thought that this event is rather unlikely.

This example demonstrates that a measure of the “information gained”
from the observation of an event x ∈ X should be sensitive to a baseline
probability distribution P ∈ ∆(X) such as an agent’s prior expectations. We
therefore aim to define a numerical measure IP(x), which assigns a number
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representing the information gained by observing x ∈ X, given prior beliefs
P ∈ ∆(X).

There are three further desiderata on the measure IP(x):

1. Lower bound. If an agent is already maximally certain that x would
occur, P(x) = 1, the agent learns nothing from observing x, so that IP(x) =

0.

2. Monotonicity. The lower the prior probability of P(x) the more infor-
mation is gained from (alternatively: the more surprised the agent is by)
observing an event x ∈ X.

3. Additivity. If an agent observes two independent events x1, x2 ∈ X, the
total information gained should be the sum of the information gained from
each individual information: IP(x1&x2) = IP(x1) + IP(x2).

1.2 Information content (surprisal)

A family of functions that satisfies these desiderata is that of negative log-
arithms (up to a scaling factor). Most frequently, the logarithm to base 2 is
used.1 1The choice of 2 relates to encoding

information in binary code, but that is not
necessary for a first understanding of the
information theoretic notions introduced
here.

Let P ∈ ∆(X) be a probability distribution over (finite) set X.2 For event

2All definitions in this primer are given
only for finite sets. Generalizations to infi-
nite sets preserve the main intuitions behind
the concepts.

x ∈ X, the information content IP(x) of x (a.k.a. surprisal of x) is defined as:

IP(x) = − log2 P(x)

Intuitively speaking, the information content IP(x) is a measure of how sur-
prised an agent with beliefs P is (alternatively: how much the agent learns)
when they observe x. Figure 1 shows the information content IP(x) as a func-
tion of P(x). Notice that an agent who assigns P(x) = 0 to some event, and
sees x happening, is infinitely perplexed (has their mind blown).

0 0.2 0.4 0.6 0.8 1
0

2

4

P(x)

I P
(x

)

Figure 1: Information content /

surprisal (to base 2) for an event x
as a function of its prior probability
P(x).
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1.3 Excursion: Background on logarithms

The logarithm is the inverse function to exponentiation:

x = by ⇔ y = logb x

Here, b > 0 is called the base of the logarithm. Since by is always posi-
tive, the logarithm takes as input only positive numbers. Figure 2 shows the
logarithm to base 2.
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Figure 2: Logarithm to base 2.

For present purposes, the following calculation rules are important:3 3The first equation is what justifies using
logarithms to fulfill the desideratum “addi-
tivity” given above. The second equation
will be used in more compact formulations
of Kullback-Leibler divergence and mutual
information (see below).

logb(xy) = logb x + logb y

logb
x
y

= logb x − logb y

Notice that we can also transform bases of logarithms as follows:

loga x =
logb x
logb a

Since logb a is a constant (independent of x), the choice of base in the defini-
tion of information content is, mathematically speaking, arbitrary.

2 Measures of expected information content

The most frequently used measures of information theory fall into one of
two categories. For one there are measures of expected information content.
These measures are discussed in this section. They follow the general format:

∑

x∈X

Probability of x × Info-content of x

Different measures of this format differ in what kind of distributions are used
to define the probability of x and the information content of x.
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The other class of information-theoretic measures commonly used in
applications are measures of expected difference in information content.
These measures are dealt with in Section 3, and they instantiate the template:

∑

x∈X

Probability of x × ( Inf.cont x wrt. Q − Inf.cont. x wrt. P )

where information content is measured based on two different distributions P
and Q.

2.1 Entropy

Let P ∈ ∆(X) be a probability distribution over (finite) set X. The entropy
H(P) of P is the expected information content under the assumption that the
true distribution is P:4,5 4Here and below, writing “true distri-

bution” or similar formulations does not
necessarily entail a strong commitment
to actual truth. It is shorthand for more
careful but cumbersome language like “the
distribution used as a reference or baseline
which we assume to be true or treat as if true
in order to calculate an expectation.”

5We follow common practice here and
assume that 0 loga 0 = 0. This is justified
because limx→0+ x loga x = 0.

H(P) =
∑

x∈X

P(x) IP(x)

= −
∑

x∈X

P(x) log2 P(x)

Intuitively speaking, the entropyH(P) measures the expected (or average)
surprisal of an agent whose beliefs are P when the true distribution is P.
Entropy can also be interpreted as a measure of uncertainty: the higher the
entropy of P the more uncertain an agent with beliefs P is about X.

Example 1. The entropy of Jones’ beliefs in Table 1 is:

H(PJ) = −
∑

x∈{sunny,cloudy,rainy}
PJ(x) log2 PJ(x)

= −(0.6 log2 0.6 + 0.2 log2 0.2 + 0.2 log2 0.2)

≈ 1.37

A similar calculation for Smith’s beliefs yields: H(PS ) ≈ 1.16. Smith is
slightly less uncertain (alternatively: more opinionated) than Jones about the
state of the weather.

2.2 Cross entropy

Let P,Q ∈ ∆(X) be probability distributions over (finite) set X. The cross en-
tropyH(P,Q) of probability distributions P and Q measures the expectation
of information content given Q from the point of view of the distribution P
(which is assumed to be true):

H(P,Q) =
∑

x∈X

P(x) IQ(x)

= −
∑

x∈X

P(x) log2 Q(x)

Intuitively speaking, the cross entropyH(P,Q) measures the expected (or
average) surprisal of an agent whose beliefs are Q when the true distribution
is P.
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Example 2. Suppose that Jones is exactly right. The beliefs PJ capture the
precise probability of the weather in the limit (when not taking the weather
conditions on the previous days into account). Smith’s beliefs are therefore
not quite in line with reality. The cross entropyH(PJ , PS ) then measures
Smith’s average surprisal by taking the real-world frequencies PJ to form the
expectation and by using Smith’s beliefs PS to define the surprisal:

H(PJ , PS ) = −
∑

x∈X

PJ(x) log2 PS (x)

= −(0.6 log2 0.1 + 0.2 log2 0.2 + 0.2 log2 0.7)

≈ 2.56

2.3 Joint entropy

Joint entropy is entropy for joint probability distributions.6 Let R ∈ ∆(X × Y) 6Here, we only look at structured spaces
with two dimensions. Joint entropy can
be generalized to further dimensions in an
analogous manner.

by a joint probability distribution over the set of all pairs in the structured
(finite) event space X × Y , and let P ∈ ∆(X) and Q ∈ ∆(Y) be the marginal
distributions over X and Y respectively.7 The joint entropyH(P,Q) of P and 7P(x) =

∑
y∈Y R(x, y).

Q is defined as:8 8Frequently used definitions
of joint entropy use random vari-
ables X and Y and read asH(X,Y) =

−∑
x∈X

∑
y∈Y P(x, y) log2 P(x, y), where

it is implicitly assumed that there is an
encompassing joint probability distribution
P(x, y) over pairs of numbers. Giving the
definition in the way we do here is more
general (beyond random variables), but also
makes clear how joint entropy is really noth-
ing special at all, except when you muffle
the joint distribution through intransparency
with random variable notation.

H(P,Q) = −
∑

x∈X

∑

y∈Y
R(x, y) log2 R(x, y)

which is just the entropy of the joint probability distribution R:

H(P,Q) = H(R) = −
∑

z∈X×Y

R(z) log2 R(z)

Example 3. Clark also has beliefs about the weather, but theirs are a joint
belief R ∈ ∆(X×Y) about the condition of the weather (X ∈ {

sunny, cloudy, rainy
}
)

and whether the swallows fly high or low in the evening (Y ∈ {
high, low

}
), as

shown in Table 2.

sunny cloudy rainy
∑

rows

high .6 × .4 = .24 .2 × .4 = .08 .2 × .4 = .08 .4
low .1 × .6 = .06 .2 × .6 = .12 .7 × .6 = .42 .6
∑

columns .3 .2 .5

Table 2: Clark’s joint probabilistic
belief about the flying of swallows
in the evening and the weather
condition the next day.

The joint entropy of Clark’s beliefs can be calculated as:

H(R) = −
∑

x∈{sunny,cloudy,rainy}

∑

y∈{high,low}
R(x, y) log2 R(x, y)

= −(.24 log2 .24 + .08 log2 .08 + .08 log2 .08 + .06 log2 .06 + . . . )

≈ 2.22

2.4 Conditional entropy

Let R ∈ ∆(X × Y) be a joint probability distribution over the set of all pairs
in X × Y , and let P ∈ ∆(X) and Q ∈ ∆(Y) be the marginal distributions over
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(finite) X and Y respectively. The conditional entropy of P given Q is the
expected surprisal of observing x after having observed some y:

H(P | Q) = −
∑

〈x,y〉∈X×Y

R(x, y) log2 R(x | y)

= −
∑

〈x,y〉∈X×Y

R(x | y)Q(y) log2 R(x | y) [Bayes rule]

= −
∑

x∈X

∑

y∈Y
R(x | y)Q(y) log2 R(x | y) [split the sum]

= −
∑

y∈Y
Q(y)

︸   ︷︷   ︸
prob. of y

∑

x∈X

R(x | y) log2 R(x | y)

︸                        ︷︷                        ︸
entropy of R(· | y)

[Q(y) ind. of x]

We can also think about conditional entropy as the average uncertainty of an
agent about dimension X after observing dimension Y . Indeed, if P and Q are
stochastically independent, thenH(P | Q) = H(P):

H(P | Q) = −
∑

y∈Y
Q(y)

∑

x∈X

R(x | y) log2 R(x | y)

= −
∑

y∈Y
Q(y)

∑

x∈X

P(x) log2 P(x) [stoch. independence]

=
∑

y∈Y
Q(y)H(P) [def. entropy]

= H(P)


∑

y∈Y
Q(y) = 1



Example 4. Suppose that Clark observes the swallows every night and then
makes a weather prediction. If P ∈ ∆(X) captures Clark’s marginal beliefs
about the weather and Q ∈ ∆(Y) those about the swallows flying, then,
from Clark’s subjective point of view, the expected surprisal of their weather
predictions after having observed the swallows is given by the conditional
entropy:

H(P | Q) = −
∑

y∈Y
Q(y)

∑

x∈X

R(x | y) log2 R(x | y)

= −Q(high) [R(sunny | high) log2 R(sunny | high)

+ R(cloudy | high) log2 R(cloudy | high)

+ R(rainy | high) log2 R(rainy | high)]+

− Q(low) [R(sunny | low) log2 R(sunny | low)

+ R(cloudy | low) log2 R(cloudy | low)

+ R(rainy | low) log2 R(rainy | low)]

= −0.4[0.6 log2 0.6 + 0.2 log2 0.2 + 0.2 log2 0.2]+

− 0.6[0.1 log2 0.1 + 0.2 log2 0.2 + 0.7 log2 0.7]

≈ 1.242
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3 Measures of expected difference in information content

Measures of expected difference in information content essentially compare
two probability distributions P and Q following the pattern:

∑

x∈X

Probability of x × ( Inf.cont x wrt. Q − Inf.cont. x wrt. P )

In general, these measures can be thought of as answers to a question like:
“how much more, on average, would an agent using Q be (needlessly) sur-
prised if the true distribution is P?”

3.1 Kullback-Leibler divergence (relative entropy)

The Kullback-Leibler (KL) divergence (also known as relative entropy) mea-
sures the expected difference in information content between the distribution
Q ∈ ∆(X) and the true distribution P ∈ ∆(X):

DKL(P ||Q) =
∑

x∈X

P(x)
(
IQ(x) − IP(x)

)

=
∑

x∈X

P(x) log2
P(x)
Q(x)

Intuitively speaking, the KL-divergence DKL(P ||Q) measures how much
more surprised an agent is, on average, when they hold beliefs described by
Q instead of the true distribution P.

KL-divergence DKL(P ||Q) can be equivalently written in terms of the
entropyH(P) of P and the cross entropyH(P,Q):9 9This reformulation shows that KL-

divergence and cross-entropy are exchange-
able when the task is to find a distribution Q
that approximates a true distribution P (e.g.,
in machine learning). KL-divergence and
cross-entropy are exchangeable in such an
optimization context since the only differ-
ence is a constant additive termH(P) which
does not depend on the to-be-optimized Q.

DKL(P ||Q) = H(P,Q) −H(P)

Example 5. Let’s assume, again, that Jones’ beliefs PJ are the true distribu-
tion. We want to compute the divergence of Smith’s beliefs PS from those of
Jones’.

DKL(PJ || PS ) =
∑

x∈X

PJ(x) log2
PJ(x)
PS (x)

= 0.6 log2
0.6
0.1

+ 0.2 log2
0.2
0.2

+ 0.2 log2
0.2
0.7

≈ 1.19

If, reversely, we assume that Smith’s beliefs are the ground-truth, and com-
pute the divergence of Jones’ beliefs from Smith’s, then the result is:

DKL(PS || PJ) =
∑

x∈X

PS (x) log2
PS (x)
PJ(x)

= 0.1 log2
0.1
0.6

+ 0.2 log2
0.2
0.2

+ 0.7 log2
0.7
0.2

≈ 1.01

This shows that KL-divergence is not a symmetric measure.10 10KL-divergence is therefore not a
distance metric (like geometrical distance).
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3.2 Mutual information

Let R ∈ ∆(X × Y) be a joint probability distribution over the set of all pairs
in X × Y , and let P ∈ ∆(X) and Q ∈ ∆(Y) be the marginal distributions over
(finite) X and Y respectively. The mutual information I(P,Q) of P and Q is
the expected excess surprisal if the dimensions X and Y are assumed to be
stochastically independent:

I(P,Q) =
∑

〈x,y〉∈X×Y

R(x, y) log2
R(x, y)

P(x) Q(y)

We can write this more intelligibly in terms of the Kullback-Leibler diver-
gence between true distribution R and the distribution S ∈ ∆(X × Y) which is
derived from P and Q by assuming that the dimensions X and Y are stochasti-
cally independent, so that S (x, y) = P(x) Q(x):

I(P,Q) = DKL(R || S ) =
∑

〈x,y〉∈X×Y

R(x, y) log2
R(x, y)
S (x, y)

Intuitively, we may think of mutual information as a measure of how much
more (needlessly) surprised an agent is who believes X and Y are stochasti-
cally independent (while having correct beliefs about the marginal distribu-
tions).

Mutual information I(P,Q) can be equivalently expressed in terms of
entropy and conditional entropy like so:

I(P,Q) = H(P) −H(P | Q)

Based on this reformulation, we can think of mutual information as a measure
of the change in uncertainty about P between a state before learning about Q
and after learning about Q. In yet other terms, mutual information captures
the reduction of uncertainty about the question “which P?” after receiving
an answer to the question “which Q?”. If P and Q are stochastically inde-
pendent, then obtaining an answer to the question “which Q?” will not tell
you anything about the question“which P?”, so that in that case I(P,Q) will
indeed be zero (H(P | Q) = H(P) whenever P and Q are independent, as we
saw above).

Example 6. Clark has the joint probability distribution R ∈ ∆(X × Y)
in Table 2, whose marginal distributions are P ∈ ∆(X) (beliefs about the
weather) and Q ∈ ∆(Y) (beliefs about the swallows). Clark’s beliefs are
repeated here from above:

sunny cloudy rainy
∑

rows

high .24 .08 .08 .4
low .06 .12 .42 .6
∑

columns .3 .2 .5
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Jackson has a joint probability distribution S ∈ ∆(X × Y) which assigns
the same probabilities to the (marginal) events “weather condition” and
“swallows’ flying height,” but which assumes that these dimensions are
independent, so that S (x, y) = P(x) Q(y). This means that Jackson’s beliefs
are these:

sunny cloudy rainy
∑

rows

high .12 .08 .20 .4
low .18 .12 .30 .6
∑

columns .3 .2 .5

If Clark’s beliefs are the reference distribution, how much more surprised will
Jackson be about the occurrence of pairs 〈x, y〉 on average?

I(X,Y) = DKL(R || S ) =
∑

〈x,y〉∈X×Y

R(x, y) log2
R(x, y)
S (x, y)

= R(sunny, high) log2
R(sunny, high)
Q(sunny, high)

+ R(cloudy, high) log2
R(cloudy, high)
Q(cloudy, high)

+ R(rainy, high) log2
R(rainy , high)
Q(rainy , high)

+ R(sunny, low) log2
R(sunny, low)
Q(sunny, low)

+ R(cloudy, low) log2
R(cloudy, low)
Q(cloudy, low)

+ R(rainy, low) log2
R(rainy , low)
Q(rainy , low)

≈ 0.24
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Exercise 1. Roberts and Carpenter hold the following beliefs about the
weather:

sunny cloudy rainy stormy

Roberts’ beliefs 0.1 0.6 0.2 0.1
Carpenter’s beliefs 0.4 0.1 0.3 0.2

Calculate the entropy of their beliefs. Who is more uncertain?

Exercise 2. Let the true distribution over weather conditions (ignoring de-
pendencies between consecutive days) be:

sunny cloudy rainy stormy

ground truth 0.7 0.1 0 0.2

Calculate the cross-entropy of Robert’s and Carpenter’s belief with respect
to this reference distribution. Can you guess who will be more suprised on
average?

Exercise 3. Calculate the KL-divergence between the reference distribution
from the previous exercise and Robert’s and Carpenter’s beliefs (each). (Hint:
you might be able to use some results from other exercises.)

Exercise 4. Proof that indeed, as claimed above, DKL(P ||Q) = H(P,Q) −
H(P)

Exercise 5. Decide for each of the following claims whether it is true or
false?

(i) Kullback-Leibler divergence is a special case of mutual information.

(ii) Kullback-Leibler divergence is a measure of expected information con-
tent of the reference distribution.

(iii) Joint entropy measures the entropy of joint probability distributions.

(iv) Entropy is a measure of the information gained from a single observa-
tion.

(v) Mutual information could be used to measure the extent to which mak-
ing an assumption of stochastic independence is severe.
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Notation
X,Y are finite sets
P, P∗ ∈ ∆(X) [P, P∗ distributions on X]
R ∈ ∆(X × Y) [joint distribution]
P(x) =

∑
y∈Y R(x, y) [marginal on X]

Q(y) =
∑

x∈X R(x, y) [marginal on Y]

Info content (subjectivist version)
Info content IP(x) (“surprisal”) measures
the perplexity of an agent with beliefs
P ∈ ∆(X) when observing x ∈ X.

think of: neural activity in a predictive brain

Definition: IP(x) = − logb P(x)
base b > 1; common choice b = 2 (bits)

0 0.2 0.4 0.6 0.8 1
0

2

4

P(x)

I P
(x

)

Justification: Negative log (b > 1) is the
only function satisfying constraints:

if everything exactly as expected, zero perplexity
If P(x) = 1, IP(x) = 0

less expected, more perplexing
If P(x1) > P(x2), then IP(x1) < IP(x2)

perplexity adds up
IP(x1&x2) = IP(x1) + IP(x2)

if x1, x2 stochastically independent

General template for all measures

Definitions below are all expected values of the form:
∑

x∈X

PGT (x) F(x)
PGT is the assumed ground-truth

F is some function related to perplexity

Logarithm rules

change of base
loga x =

logb x
logb a

Logarithm rules

division-to-subtraction rule
logb

x
y = logb x − logb y

PGT F definition

entropy H(P) P IP −∑x∈X P(x) logb P(x)
average perplexity of an agent with beliefs P when the ground truth is P

cross-entropy H(P∗, P) P∗ IP −∑x∈X P∗(x) logb P(x)
average perplexity of an agent with beliefs P when the ground truth is P∗

joint entropy H(P,Q) R IR′ −∑z∈X×Y R(z) logb R(z)
just entropy applied to a joint probability distribution; slightly boring but useful for the “fun facts” below
NB: cross-entropy compares distributions on the same X, joint entropy looks at the joint distribution over product of space X × Y

conditional entropy H(P | Q) Q H(R|y) −∑y∈Y Q(y)
∑

x∈X R(x | y) logb R(x | y) where R|y(x) = R(x | y)

R IS −∑〈x,y〉∈X×Y R(x, y) logb R(x | y) where S (〈x, y〉) = R(x | y)

average entropy of an agent’s conditional beliefs about X after observing events from Y; how uncertain is the agent about X when they observe Y
two equivalent formulations here: the second is the usual (compact) definition; the first is easier to interpret

relative entropy DKL(P || Q) P IQ − IP
∑

x∈X P(x) logb
P(x)
Q(x)

also known as Kullback-Leibler divergence; average difference in perplexity when agent believes Q instead of true P
“excess surprisal” or “unnecessary perplexity” on top of the minimum (when having “true beliefs” P)

mutual information I(P,Q) R IRy − IR
∑
〈x,y〉∈X×Y R(x, y) logb

R(x,y)
P(x) Q(x) where Ry(x, y) = P(x) Q(x)

excess perplexity of an agent believing that X and Y are independent, when in truth they might not be
alternatively: how much learning about Y reduces uncertainty about X (and vice versa; see facts below)
special case of KL-divergence for joint distributions, one treating X and Y as independent

Fun facts

P∗ = arg minPH(P∗, P)
H(P, P) = H(P)
DKL(P || Q) = H(P,Q) −H(P)

I(P,Q) = I(Q, P)
I(P,Q) = H(P) −H(P | Q)
I(P,Q) = H(P) +H(Q) −H(P,Q)

H(P,Q)

H(P | Q) H(Q | P)I(P,Q)
H(P) H(Q)
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