
A cheat sheet on measures from information theory (for the subjectively perplexed) Michael Franke

Notation
X,Y are finite sets
P, P∗ ∈ ∆(X) [P, P∗ distributions on X]
R ∈ ∆(X × Y) [joint distribution]
P(x) =

∑
y∈Y R(x, y) [marginal on X]

Q(y) =
∑

x∈X R(x, y) [marginal on Y]

Info content (subjectivist version)
Info content IP(x) (“surprisal”) measures
the perplexity of an agent with beliefs
P ∈ ∆(X) when observing x ∈ X.

think of: neural activity in a predictive brain

Definition: IP(x) = − logb P(x)
base b > 1; common choice b = 2 (bits)
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Justification: Negative log (b > 1) is the
only function satisfying constraints:

if everything exactly as expected, zero perplexity
If P(x) = 1, IP(x) = 0

less expected, more perplexing
If P(x1) > P(x2), then IP(x1) < IP(x2)

perplexity adds up
IP(x1&x2) = IP(x1) + IP(x2)

if x1, x2 stochastically independent

General template for all measures

Definitions below are all expected values of the form:∑
x∈X

PGT (x) F(x)
PGT is the assumed ground-truth

F is some function related to perplexity

Logarithm rules

change of base
loga x =

logb x
logb a

Logarithm rules

division-to-subtraction rule
logb

x
y = logb x − logb y

PGT F definition

entropy H(P) P IP −
∑

x∈X P(x) logb P(x)
average perplexity of an agent with beliefs P when the ground truth is P

cross-entropy H(P∗, P) P∗ IP −
∑

x∈X P∗(x) logb P(x)
average perplexity of an agent with beliefs P when the ground truth is P∗

joint entropy H(P,Q) R IR′ −
∑

z∈X×Y R(z) logb R(z)
just entropy applied to a joint probability distribution; slightly boring but useful for the “fun facts” below
NB: cross-entropy compares distributions on the same X, joint entropy looks at the joint distribution over product of space X × Y

conditional entropy H(P | Q) Q H(R|y) −
∑

y∈Y Q(y)
∑

x∈X R(x | y) logb R(x | y) where R|y(x) = R(x | y)

R IS −
∑
〈x,y〉∈X×Y R(x, y) logb R(x | y) where S (〈x, y〉) = R(x | y)

average entropy of an agent’s conditional beliefs about X after observing events from Y; how uncertain is the agent about X when they observe Y
two equivalent formulations here: the second is the usual (compact) definition; the first is easier to interpret

relative entropy DKL(P || Q) P IQ − IP
∑

x∈X P(x) logb
P(x)
Q(x)

also known as Kullback-Leibler divergence; average difference in perplexity when agent believes Q instead of true P
“excess surprisal” or “unnecessary perplexity” on top of the minimum (when having “true beliefs” P)

mutual information I(P,Q) R IRy − IR
∑
〈x,y〉∈X×Y R(x, y) logb

R(x,y)
P(x) Q(x) where Ry(x, y) = P(x) Q(x)

excess perplexity of an agent believing that X and Y are independent, when in truth they might not be
alternatively: how much learning about Y reduces uncertainty about X (and vice versa; see facts below)
special case of KL-divergence for joint distributions, one treating X and Y as independent

Fun facts

P∗ = arg minPH(P∗, P)
H(P, P) = H(P)
DKL(P || Q) = H(P,Q) −H(P)

I(P,Q) = I(Q, P)
I(P,Q) = H(P) −H(P | Q)
I(P,Q) = H(P) +H(Q) −H(P,Q)

H(P,Q)

H(P | Q) H(Q | P)I(P,Q)
H(P) H(Q)


