A cheat sheet on measures from information theory (for the subjectively perplexed) Michael Franke

Notation

X, Y are finite sets

P, P* € A(X) [P, P* distributions on X]
Re AXXY) [joint distribution]
P(x) = Zer R(x,y) [marginal on X]
0O) = D ex R(x,y) [marginal on Y]

Info content (subjectivist version)

Info content /p(x) (“surprisal”’) measures
the perplexity of an agent with beliefs
P € A(X) when observing x € X.

think of: neural activity in a predictive brain
Definition: /p(x) = —log, P(x)

base b > 1; common choice b = 2 (bits)
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Justification: Negative log (b > 1) is the
only function satisfying constraints:

if everything exactly as expected, zero perplexity
If P(x) = 1, Ip(x) = 0
less expected, more perplexing

If P(x1) > P(x,), then Ip(x1) < Ip(xy)

perplexity adds up
Ip(x1&x2) = Ip(x1) + Ip(x2)

if x1, x» stochastically independent

General template for all measures Logarithm rules
Definitions below are all expected values of the form: change of base division-to-subtraction rule
_ log, x x _ _
Pgr is the assumed ground-truth log, x = logy, a log, y log, x —log, y
D PerFx | |
F is some function related to perplexity
xeX
Per F definition
entropy HP) P Iy ~ Yex P() log, P(x)

average perplexity of an agent with beliefs P when the ground truth is P

cross-entropy H(P*, P) P Ip — Yvex P7(x) log, P(x)

average perplexity of an agent with beliefs P when the ground truth is P*

joint entropy H(P, Q) R Ip — 2zexxy R(2) log, R(z)

just entropy applied to a joint probability distribution; slightly boring but useful for the “fun facts” below
NB: cross-entropy compares distributions on the same X, joint entropy looks at the joint distribution over product of space X X Y

conditional entropy H(P | Q) Q0 HRY) -2y O0) XiexR(x1y) log,R(x|y) where RY(x) = R(x | y)
R IS - Z(x,y)eXXY R(x’ }’) logb R(X | }’) where S ({(x,y)) = R(x | y)

average entropy of an agent’s conditional beliefs about X after observing events from Y; how uncertain is the agent about X when they observe Y
two equivalent formulations here: the second is the usual (compact) definition; the first is easier to interpret

relative entropy Dx(PIlQ) P Ip-1Ip ey P(x) log, %
also known as Kullback-Leibler divergence; average difference in perplexity when agent believes Q instead of true P

“excess surprisal” or “unnecessary perplexity”” on top of the minimum (when having “true beliefs” P)

mutual information I(P,0) R I — I Depexxy R(x,y) log, % where R(x,y) = P(x) Q(x)
excess perplexity of an agent believing that X and Y are independent, when in truth they might not be

alternatively: how much learning about Y reduces uncertainty about X (and vice versa; see facts below)

special case of KL-divergence for joint distributions, one treating X and Y as independent

Fun facts
' H(P,Q)
P* = arg minp H(P*, P) I(P,Q) =1(Q, P)
H(P,P) = H(P) I(P,Q) = H(P)-H(P| Q)
Dy (P || Q) = H(P,Q) — H(P) I(P,Q) = H(P) + H(Q) = H(P, Q) H(P) H(O)



