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Basics of probability theory: axiomatic definition, interpretation, joint
distributions, marginalization, conditional probability, Bayes rule,
stochastic independence. Random variables & expected values.

Classical logic explores which conclusions follow from a set of premises.
The conclusion must follow necessarily from the premises, based on the
logical structure of the premises and the conclusions, not based on additional
knowledge about the actual world, not on things that could (logically) have
been different. In contrast, much of human knowledge and reasoning revolves
around statistical knowledge: since most birds can fly, if I learn that Tweety
is a bird, it is reasonable to conclude that Tweety is likely to fly (unless I
have more information about Tweety that might provide evidence against
this uncertain inference). Probability theory is a formal framework to capture
such reasoning under uncertainty.

Just like there are several logics, there are also several formalizations for
reasoning with uncertainty, some of which are simpler and some of which
are way more complex than standard probability theory. Some alternative
systems are argued to be more empirically adequate for capturing human
reasoning than probability theory. However, what singles out probability
theory is that it strikes a good balance between simplicity, adequacy and
applicability. As such, it lies at the heart of much of modern statistics and
machine learning, with a plethora of mathematical results and algorithms
supporting its wide-spread applications in all areas of science.

Besides talking about reasoning, another way of motivating why we
should look at probability theory is to take the perspective of a single agent’s
beliefs. Modal logics of belief allow an agent to be in three states with re-
spect to any proposition p: they believe p is true, are uncertain about it, or
they believe that p is false. But there can be more gradation. Jones and Smith
might both be uncertain about p, but while Jones believes that p is probable,
Smith considers it rather unlikely. Probability theory gives us formal tools to
model (subjective) degrees of credence in a proposition (as the philosophers
like to say).

1 Probability

The most central concept of probability theory is that of a probability distri-
bution. A probability distribution captures a state of uncertainty regarding
which of a number of relevant events might hold or will occur. It assigns a
number to each relevant event. This number indicates how likely the event is
supposed to be (relative to others).
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1.1 Outcomes, events, observations

We are interested in the space Ω of all elementary outcomes ω1, ω2, . . . of a
process or event whose execution is (partially) random or unknown.

Elementary outcomes are mutually exclusive. The set Ω exhausts all
possibilities.1 1For simplicity of exposure, we gloss

over subtleties arising when dealing with
infinite sets Ω.Example 1. The set of elementary outcomes of a single coin flip is Ωcoin flip =

{heads, tails}. The set of elementary outcomes of tossing a six-sided die is
Ωstandard die =

{
, , , , ,

}
.2 2Think of Ω as a partition of the space

of all possible worlds, i.e., ways in which
the world could be, where we lump together
into one partition cell all ways in which the
world could be that are equivalent regarding
those aspects of reality that we are interested
in. We do not care whether the coin lands
in the mud or in the sand. It only matters
whether it came up heads or tails. Each
elementary event can be realized in myriad
ways. Ω is our, the modellers’, first crude
simplification of nature, abstracting away
aspects we currently do not care about.

An event A is a subset of Ω. Think of an event as a (possibly partial)
observation. We might observe, for instance, not the full outcome of tossing
a die, but only that there is a dot in the middle. This would correspond to the
event A =

{
, ,

}
⊆ Ωstandard die, i.e., observing an odd-numbered outcome.

The trivial observation A = Ω and the impossible observation A = ∅ are
counted as events, too. The latter is included for technical reasons.

For any two events A, B ⊆ Ω, standard set operations correspond to logical
connections in the usual way. For example, the conjunction A ∩ B is the
observation of both A and B; the disjunction A ∪ B is the observation that it is
either A or B; the negation of A, A = {ω ∈ Ω | ω < A}, is the observation that
it is not A.

1.2 Probability distributions

A probability distribution P over Ω is a function P : P(Ω) → R that assigns
to all events A ⊆ Ω a real number (from the unit interval, see A1), such that
the following (so-called Kolmogorov axioms) are satisfied:

A1. 0 ≤ P(A) ≤ 1

A2. P(Ω) = 1

A3. P(A1 ∪ A2 ∪ A3 ∪ . . . ) = P(A1) + P(A2) + P(A3) + . . .

whenever A1, A2, A3, . . . are mutually exclusive3 3A3 is the axiom of countable additivity.
Finite additivity may be enough for finite
or countable sets Ω, but infinite additiv-
ity is necessary for full generality in the
uncountable case.

Occasionally we encounter notation P ∈ ∆(Ω) to express that P is a proba-
bility distribution over Ω.4 If ω ∈ Ω is an elementary event, we often write

4E.g., in physics, theoretical economics
or game theory. Less so in psychology or
statistics.

P(ω) as a shorthand for P({ω}). In fact, if Ω is finite, it suffices to assign
probabilities to elementary outcomes.

It is possible for a probability distribution P ∈ ∆(Ω) to assign probability
zero P(ω) = 0 for some ω ∈ Ω. The set of elementary outcomes to which P
assigns positive probability is called the support of P.

1.3 Implications of the axiomatic definition

A number of useful rules follows immediately from of this definition. Here
we prove one (see exercises for more).
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Claim 2. If Ω = {ω1, . . . , ωn} is a finite set of elementary outcomes and
P ∈ ∆(Ω) a probability distribution over Ω, then the sum of the probabilities
of all elementary outcomes is equal to 1:5 5The notation with the big sigma,

∑
used

here is a shorthand for a large sum. For ex-
ample, if we have three numbers x1, x2, x3,
then the sum of these three numbers can be
written as

∑3
i=1 xi = x1 + x2 + x3.

n∑
i=1

P(ωi) = 1

Proof. From A3 we know that:

n∑
i=1

P(ωi) = P({w1} ∪ · · · ∪ {wn})

Since Ω = {w1} ∪ · · · ∪ {wn}, it follows from A2 that
∑n

i=1 P(ωi) = 1. �

It follows from Claim 2 that, in order to fully determine a probability
distribution P ∈ ∆(Ω) over a finite Ω with n elements, we only need to specify
n − 1 probabilities, since the nth probability can be retrieved as “one minus
the sum of all others.”

1.4 Interpretations of probability

It is reasonably safe, at least preliminarily, to think of probability, as defined
above, as a handy mathematical primitive which is useful for certain appli-
cations. There are at least three ways of thinking about where this primitive
probability might come from, roughly paraphrasable like so:

1. Frequentist: Probabilities are generalizations of intuitions/facts about
frequencies of events in repeated executions of a random event.

2. Subjectivist: Probabilities are subjective beliefs by an agent who is uncer-
tain about the outcome of a random event.

3. Realist: Probabilities are a property of an intrinsically random world.

While trying to stay away from philosophical quibbles, we will adopt a
subjectivist interpretation of probabilities, since this interpretation is most
encompassing and —arguably— intuitive. But note that frequentist consid-
erations affect what a rational agent should believe (see the urns scenario in
Section 1.7).

Example 3 (Subjective beliefs about the weather). Consider the set of
elementary outcomes Ωweather =

{
sunny,misty, rainy

}
of potential weather

condition for tomorrow at noon.6 Jones, the optimist, does not know what 6We assume that these states are inde-
pendent and that these are all the states the
weather might be in (for simplicity of an
example).

the weather will bring, but believes that it is most likely to be sunny. In fact,
Jones believes —for whatever reason— that it is three times as likely to be
sunny than that it is going to be misty. Jones also believes that being misty
and being rainy is equallly likely. This information about Jones’ relative
degrees of credence alone, is enough to know that, according to Jones, the
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probability of the three weather conditions are given in the first line of Ta-
ble 1.

Smith is more pessimistic. Smith believes that “misty” is twice as likely as
“sunny” and that “rainy” is seven times more likely than “sunny.” This infor-
mation about relative probabilities is enough to know that Smith’s beliefs are
those represented in the second line of Table 1.

Notice that, in the case of beliefs about the weather, it is fairly unproblem-
atic to imagine that two agents, even rational ones, might have quite different
(subjective) beliefs about the same set of elementary outcomes. This is not
always the case (see Section 1.7).

sunny cloudy rainy

Jones’ beliefs 0.6 0.2 0.2
Smith’s beliefs 0.1 0.2 0.7

Table 1: Subjective beliefs about
the weather.

1.5 Odds & wheels of fortune

The previous example demonstrated how the probabilities of a space with
three elementary outcomes, like Ωweather =

{
sunny,misty, rainy

}
, is com-

pletely determined by two numbers describing relative probabilities, so-
called odds, e.g.:

P(sunny)
P(rainy)

= o1
P(misty)
P(rainy)

= o2

Indeed, odds are actually much more meaningful than absolute num-
bers for probabilities. A nice way to see this is to think of probabilities like
those in Table 1 as the probabilities of outcomes on a wheel of fortune (see
Figure 1). A wheel of fortune is spun and the outcome is determined by what-
ever area is on top (usually indicated by a marker or needle). The wheel of
fortune that corresponds to Jones’ beliefs, shown on the left-hand side in Fig-
ure 1, has areas that correspond to the three elementary outcomes. Notice that
neither the absolute size of any area, nor the absolute length of the circum-
ference which is covered by that area is important. In order for the wheel of
fortunes in Figure 1 to match the probabilities in Table 1, what matters is only
that the areas have the right proportion. In other words, relative areas (odds)
are what matters most; we should think of probabilities first and foremost as
relative to each other, rather than in absolute terms.

1.6 Non-normalized probabilities

Since what matters most are odds, not absolute numbers, we can also specify
probability distributions in terms of non-normalized probabilities. Concretely,
the following is a complete and sufficient alternative way of specifying Jones’
beliefs as in Table 1:

P(sunny) ∝ 120 P(misty) ∝ 40 P(rainy) ∝ 40
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Jones

rainy

mistysunny

Smith

rainy

misty

sunny

Figure 1: Two beliefs about the
weather, represented as wheels of
fortune.

Here, the operator ∝ (read: “proportional to”) is used. More generally, if
f : Ω → R≥0 is a function that maps each elementary outcome of Ω onto a
non-negative real number, then writing P(ω) ∝ f (ω) fully and unambiguously
defines a probability distribution in terms of the non-normalized probabilities
assigned to each ω by f , namely:

P(ω) =
f (ω)∑
ω′ f (ω′)

1.7 Urns and frequencies

Another way of thinking about probabilities for discrete sets Ω, is in terms
of urns. Think of an urn as a container which contains a number of N > 1
balls. Balls can be of different color. For example, let us suppose that our
urn has k > 0 black balls and N − k white balls. (There is at least one black
and one white ball.) For a single random draw from our urn we have: Ωurn =

{white, black}. Figure 2 shows such an urn with k = 7 and N = 10.

Figure 2: Urn with k = 7 black
balls out of N = 10 balls in total.

Imagine a long sequence of single draws from the urn in Figure 2, putting
whichever ball we drew back in after every draw. We keep a record of how
many times we drew a black ball, and divide this number by the number of
times we drew a ball. Figure 3 shows the results from a computer simulation
of this process. In general, the limiting proportion with which we draw a
black ball is k

N . Another way of saying this is that the objective probability
is P(black) = k

N . Consequently, a rational agent’s subjective beliefs should
conform to the objective probability P(black) = k

N , unlike in other cases like
the weather.
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Figure 3: Temporal development of
the proportion of drawing a black
ball from the urn.

Exercise 1. Using the rules of probability theory, prove that the following
claims hold.

C1. P(∅) = 0

C2. P(A) = 1 − P(A)

C3. P(A ∪ B) = P(A) + P(B) − P(A ∩ B) for any A, B ⊆ Ω

Exercise 2. Write down the probability distributions over Ωweather ={
sunny,misty, rainy

}
that are defined in terms of the following pieces of

information

(i) Miller believes that “rainy” is impossible, and that “sunny” is three
times as likely as “misty.”

(ii) Ford has beliefs given by the following non-normalized probabilities:

P(sunny) ∝ 3 P(misty) ∝ 9 P(rainy) ∝ 27

(iii) Johnson believes that “sunny” is as likely as not and that the odds in
favor of “rainy” over “misty” are 3 to 2.
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2 Structured events & marginal distributions

2.1 Probability table for a flip-&-draw scenario

Suppose we have two urns. Both have N = 10 balls. Urn 1 has k1 = 2 black
and N − k1 = 8 white balls. Urn 2 has k2 = 4 black and N − k2 = 6 white
balls. We sometimes draw from urn 1, sometimes from urn 2. To decide, we
flip a fair coin. If it comes up heads, we draw from urn 1; if it comes up tails,
we draw from urn 2. A schematic representation of this flip-&-draw scenario
is shown in Figure 4.

Figure 4: The flip-&-draw scenario,
illustrating structured event spaces
and conditional probabilities.

An elementary outcome of this two-step process of flip-&-draw is a pair〈
outcome-flip, outcome-draw

〉
. The set of all possible such outcomes is

Ωflip-&-draw = {〈heads, black〉 , 〈heads,white〉 , 〈tails, black〉 , 〈tails,white〉}

The probability of event 〈heads, black〉 is given by multiplying the probabil-
ity of seeing “heads” on the first flip, which happens with probability 0.5,
and then drawing a black ball, which happens with probability 0.2, so that
P(〈heads, black〉) = 0.5 · 0.2 = 0.1. The probability distribution over Ωflip-draw

is consequently as in Table 2.7 7If in doubt, start flipping & drawing and
count your outcomes.

black white

heads 0.5 · 0.2 = 0.1 0.5 · 0.8 = 0.4
tails 0.5 · 0.4 = 0.2 0.5 · 0.6 = 0.3

Table 2: Probabilities of ele-
mentary outcomes (pairs of〈
outcome-flip, outcome-draw

〉
)

in the flip-&-draw example.
2.2 Structured events and joint-probability distributions

Table 2 is an example of a joint probability distribution over a structured
event space, which here has two dimensions. Since our space of outcomes is
the Cartesian product of two simpler outcome spaces, namely Ω f lip−&−draw =

Ω f lip×Ωdraw,8 we can use notation P(heads, black) as shorthand for P(〈heads, black〉). 8With Ωflip = {heads, tails} and Ωdraw =

{black,white}.
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More generally, if Ω = Ω1 × . . .Ωn, we can think of P ∈ ∆(Ω) as a joint prob-
ability distribution over n subspaces.

2.3 Marginalization

If P is a joint probability distribution over event space Ω = Ω1 × . . .Ωn, the
marginal distribution over subspace Ωi, 1 ≤ i ≤ n, is the probability distribu-
tion that assigns to all Ai ⊆ Ωi the probability (where notation P(. . . , ω, . . . ) is
shorthand for P(. . . , {ω}, . . . )):9 9This notation, using

∑
, assumes that

subspaces are countable. In other cases, a
parallel definition with integrals can be used.

P(Ai) =
∑
ω1∈Ω1

∑
ω2∈Ω2

· · ·
∑

ωi−1∈Ωi−1

∑
ωi+1∈Ωi+1

· · ·
∑
ωn∈Ωn

P(ω1, . . . , ωi−1, Ai, ωi+1, . . . ωn)

For example, the marginal distribution over coin flips derivable from the
joint probability distribution in Table 2 gives P(heads) = P(tails) = 0.5,
since the sum of each row is exactly 0.5. The marginal distribution over flips
derivable from Table 2 has P(black) = 0.3 and P(white) = 0.7.10 10The term “marginal distribution” de-

rives from such probability tables, where
traditionally the sum of each row/column
was written in the margins.3 Conditional probability

Fix probability distribution P ∈ ∆(Ω) and events A, B ⊆ Ω. The conditional
probability of A given B, written as P(A | B), gives the probability of A on the
assumption that B is true.11 It is defined like so: 11We also verbalize this as “the con-

ditional probability of A conditioned on
B.”

P(A | B) =
P(A ∩ B)

P(B)

Conditional probabilities are only defined when P(B) > 0.12 12Updating with events which have
probability zero entails far more severe
adjustments of the underlying belief system
than just ruling out information hitherto
considered possible. Formal systems that
capture such belief revision are studied in
formal epistemology.

Example 4. If a dice is unbiased, each of its six faces has equal probability
to come up after a toss. The probability of event B =

{
, ,

}
that the

tossed number is odd has probability P(B) = 1
2 . The probability of event

A =
{
, , ,

}
that the tossed number is bigger than two is P(A) = 2

3 . The
probability that the tossed number is bigger than two and odd is P(A ∩ B) =

P(
{
,

}
) = 1

3 . The conditional probability of tossing a number that is bigger
than two, when we know that the toss is even, is P(A | B) =

1/3
1/2

= 2
3 .

Algorithmically, conditional probability first rules out all events in which
B is not true and then simply renormalizes the probabilities assigned to the
remaining events in such a way that the relative probabilities of surviving
events remains unchanged. Given this, another way of interpreting condi-
tional probability is that P(A | B) is what a rational agent should believe
about A after observing that B is in fact true and nothing more. The agent
rules out, possibly hypothetically, that B is false, but otherwise does not
change opinion about the relative probabilities of anything that is compatible
with B.
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3.1 Bayes rule

Looking back at the joint-probability distribution in Table 2, the conditional
probability P(black | heads) of drawing a black ball, given that the initial coin
flip showed heads, can be calculated as follows:

P(black | heads) =
P(black, heads)

P(heads)
=

0.1
0.5

= 0.2

This calculation, however, is quite spurious. We knew that already from the
way the flip-&-draw scenario was set up. After flipping heads, we draw from
urn 1, which has k = 2 out of N = 10 black balls, so clearly: if the flip
is heads, then the probability of a black ball is 0.2. Indeed, in a step-wise
random generation process like the flip-&-draw scenario, some conditional
probabilities are very clear, and sometimes given by definition. These are,
usually, the conditional probabilities that define how the process unfolds
forward in time, so to speak.

Bayes rule is a way of expressing, in a manner of speaking, conditional
probabilities in terms of the “reversed” conditional probabilities:

P(B | A) =
P(A | B) · P(B)

P(A)

Bayes rule follows directly from the definition of conditional probabilities,
according to which P(A ∩ B) = P(A | B) · P(B), so that:

P(B | A) =
P(A ∩ B)

P(A)
=

P(A | B) · P(B)
P(A)

Bayes rule allows for reasoning backwards from observed causes to likely
underlying effects. When we have a feed-forward model of how unobservable
effects probabilistically constrain observable outcomes, Bayes rule allows us
to draw inferences about latent/unobservable variables based on the observa-
tion of their downstream effects.

Consider yet again the flip-&-draw scenario. But now assume that Jones
flipped the coin and drew a ball. We see that it is black. What is the probabil-
ity that it was drawn from urn 1, equivalently, that the coin landed heads? It is
not P(heads) = 0.5, the so-called prior probability of the coin landing heads.
It is a conditional probability, also called the posterior probability,13 namely 13The terms prior and posterior make

sense when we think about an agent’s belief
state before (prior to) and after (posterior to)
an observation.

P(heads | black), but one that is not as easy and straightforward to write down
as the reverse P(black | heads) of which we said above that it is an almost
trivial part of the set up of the flip-&-draw scenario. It is here that Bayes rule
has its purpose:

P(heads | black) =
P(black | heads) · P(heads)

P(black)
=

0.2 · 0.5
0.3

=
1
3

This result is quite intuitive. Drawing a black ball from urn 2 (i.e., after
seeing tails) is twice as likely as drawing a black ball from urn 1 (i.e., after
seeing heads). Consequently, after seeing a black ball drawn, with equal
probabilities of heads and tails, the probability that the coin landed tails is
also twice as large as that it landed heads.
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3.2 Stochastic (in-)dependence

Event A is stochastically independent of B if, intuitively speaking, learning B
does not change one’s beliefs about A, i.e., P(A | B) = P(A).

Claim 5. If A is stochastically independent of B, then B is stochastically
independent of A.

Proof.

P(B | A) =
P(A | B) P(B)

P(A)
[Bayes rule]

=
P(A) P(B)

P(A)
[by ass. of independence]

= P(B) [cancellation]

�

For example, imagine a flip-and-draw scenario like in Figure 4 where the
initial coin flip has a bias of 0.8 towards heads, but each of the two urns has
the same number of black balls, namely 3 black and 7 white balls. Intuitively
and formally, the probability of drawing a black ball is then independent of
the outcome of the coin flip; learning that the coin landed heads, does not
change our beliefs about how likely the subsequent draw will result in a black
ball. The probability table for this example is in Table 3.

heads tails
∑

rows

black 0.8 × 0.3 = 0.24 0.2 × 0.3 = 0.06 0.3
white 0.8 × 0.7 = 0.56 0.2 × 0.7 = 0.14 0.7∑

columns 0.8 0.2

Table 3: Joint probability table for
a flip-and-draw scenario where the
coin has a bias of 0.8 towards heads
and where each of the two urns
holds 3 black and 7 white balls.Independence shows in Table 3 in the fact that the probability in each cell

is the product of the two marginal probabilities. This is a direct consequence
of stochastic independence:

Claim 6 (Probability of conjunction of stochastically independent
events). For any pair of events A and B with non-zero probability:

P(A ∩ B) = P(A) P(B) [if A and B are stoch. independent]

Proof. By assumption of independence, it holds that P(A | B) = P(A). But
then:

P(A ∩ B) = P(A | B) P(B) [def. of conditional probability]

= P(A) P(B) [by ass. of independence]

�
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Exercise 3. Consider a flip-&-draw scenario like the process in Figure 4, but
with a biased coin that lands heads with probability 0.7. Assume further that
the “heads-urn” (the urn to draw from after a “heads” outcome) has 25 balls
in total out of which 10 are black, and that the “tails-urn” has 30 balls in total
out of which 20 are black.

(i) Calculate the joint probability of all elementary outcomes (pairs of flips
and draws).

(ii) Compute the marginal probabilities of “heads” and “tails.”

(iii) Compute the conditional probability of “heads” given “black.”

Exercise 4. Consider the following (fictitious) joint-probability table of hair
and eye color.

black hair brown hair blonde hair red hair

brown eyes 0.4 0.22 0.05 0.03
blue eyes 0.05 0.12 0.08 0.004
green eyes 0.001 0.01 0.005 0.03

(i) Calculate the following marginal probabilities. (NB: This exercise uses
informal notation like “non-green eyes” instead of cumbersome set-
theoretic notation.)

a. P(black hair)

b. P(black hair or red hair)

c. P(non-green eyes)

(ii) Calculate the following conditional probabilities:

a. P(blue eyes | black hair)

b. P(brown hair | non-brown eyes)

c. P(non-green eyes | brown eyes)

d. P(black hair | blue eyes)

(iii) Which of the following events are stochastically independent?

a. black hair and green eyes

b. black hair and brown hair
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4 Random variables

We have so far defined a probability distribution as a function that assigns a
probability to each subset of the space Ω of elementary outcomes. A special
case occurs when we are interested in a space of numeric outcomes, such
as the probability of observing 3 heads when throwing a coin 10 times, or
of measuring a reaction time of 300 ms in a lexical decision task. Probabil-
ity distributions over numeric outcomes are conceptually no different from
other probability distributions: in each case we set up a space of elementary
outcomes as sets of possible worlds which agree on a certain criterion of rel-
evance, which could be something non-numeric (like hair color) or numeric
(like the integer or real valued reaction time in an experimental trial). Yet,
“probability distributions over numbers” are special because we often like to
use mathematical operations in connection with the elementary outcomes or
events. For instance, we might be interested in the probability of numerical
observations obtained by throwing a fair dice twice in a row and adding the
number shown in each. To express these kinds of operations and transforma-
tions, we use a special notation for “probability distributions over numbers”
called random variables.

4.1 Definition, notation & terminology

A random variable is a function X : Ω → R that assigns to each elementary
outcome a numerical value. Traditionally, random variables are represented
by capital letters, like X. Variables for the numeric values they take on are
written as small letters, like x. We write P(X = x) as a shorthand for the
probability P({ω ∈ Ω | X(ω) = x}) that an event occurs that is mapped onto
x by random variable X. Similarly, we can also write P(X ≤ x) for the
probability of observing an event that X maps to a number not bigger than x.

If the range of X is countable (not necessarily finite), we say that X is dis-
crete. For ease of exposition, we may say that if the range of X is an interval
of real numbers, X is called continuous.14 14This introductory primer only looks

at the discrete case. The continuous case
requires special mathematical treatment,
but the underlying ideas behind central
definitions and behavior are, for the most
part, conceptually analogous.

The support of a random variable X is:

support(X) =
{
x ∈ range(X) | P(X = x) , 0

}
.

When the context is clear enough, we might also just write P(x) as a
shorthand for P(X = x).

Example 7. For a single flip of a coin we have Ωcoin flip = {heads, tails}.
A usual way of mapping outcomes of coin flips to numbers is to say that
“heads” is 1 and “tails” is 0. The probability of an outcome depends on the
bias θ which the coin has towards landing heads up. Therefore we define
Xθ

flip : heads 7→ 1; tails 7→ 0 and obtain that:

P(Xθ
flip = 1) = θ P(Xθ

flip = 0) = 1 − θ
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Figure 5 shows examples of the probability distributions of single flips of a
fair (θ = 0.5) and a biased coin which lands heads three times more often than
tails (θ = 0.75). The support of Xθ

flip is {0, 1} whenever 0 < θ < 1.

0 1
0

0.2
0.4
0.6
0.8

1

0.5 0.5

x

P(X0.5
flip = x)

0 1
0

0.2
0.4
0.6
0.8

1

0.25

0.75

x

P(X0.75
flip = x)

Figure 5: Probability distribution
for random variables X0.5

flip (fair
coin) and X0.75

flip (biased coin).

Example 8. Less trivially, imagine flipping a coin two times. Elementary
outcomes should be individuated by the outcome of the first flip and the
outcome of the second flip, so that we get:

Ω2flips = {〈heads, heads〉 , 〈heads, tails〉 , 〈tails, heads〉 , 〈tails, tails〉}

Consider the random variable Xθ
2flips that counts the total number of heads.

Crucially, we assign the same numerical value to different elementary out-
comes, because Xθ

2flips(〈heads, tails〉) = 1 = Xθ
2flips(〈tails, heads〉). Figure 6

shows examples for a fair (θ = 0.5) and a biased coin (θ = 0.75). The support
of Xθ

2flips is {0, 1, 2} whenever 0 < θ < 1.
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P(X0.5
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0.4
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6.25 · 10−2

0.38
0.56

x

P(X0.75
2flips = x)

Figure 6: Probability distribution
for random variables X0.5

2flips (fair
coin flipped twice, count number of
heads) and X0.75

2flips (same for biased
coin landing “heads” three times
more often than “tails”).

4.2 Expected value

The expected value of random variable X (a.k.a. the mean of X) is a measure
of central tendency. It tells us, like the name suggests, which average value
of X we can expect when repeatedly sampling from X. If X is discrete, the
expected value is:15 15If X is continuous, parallel definitions

apply, where —intuitively speaking— the
sum signs are replaced by integrals.EX =

∑
x∈support(X)

x · P(X = x)
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Example 9. The expected values of Xθ
flip is:

EXθ
flip

=
∑

x∈support(Xθ
flip)

x · P(X = x) = (1 − θ) · 0 + θ · 1 = θ

So, concretely, for a fair coin we have EX0.5
flip

= 0.5. This show that the ex-
pected value is not (necessarily) the same as the most likely value.

The expected value of function f : R→ R under X is:16 16This will be useful for the definition
of information-theoretic notions, such as
entropy.EX f =

∑
x∈support(X)

f (x) · P(X = x)

4.3 Composite random variables

The notation in terms of random variables is particularly useful for composite
random variables, when we write expressions like Z = 2X + Y . For instance,
Xflipθ might be the outcome of a single flip of a coin with bias θ (as in Ex-
ample 7). The composite variable Z = Xflipθ + Xflipθ is built by, intuitively
speaking, repeatedly generating a random number from Xflipθ , and another
one (independently) from Xflipθ again and then adding the two numbers. In-
deed, the resulting composite random variable is what we already saw above:

X2flipsθ = Xflipθ + Xflipθ

Composite random variables need not just iterate the same random pro-
cess.

Example 10. Let X be the probability distribution of rolling a fair dice with
six sides. Y is the probability distribution of flipping a biased coin that lands
heads (represented as number 1) with probability 0.75. We are interested in
the composite random variable Z = X + Y . The support of Z is {0, 1, . . . , 7}.
The probability mass function of Z is shown in Figure 7.

Of course, more fancy mathematical operations, beyond summation,
are conceivable, e.g.: Z = log(|X|) −

√
Y . Notice, however, that there are

some subtle differences with normal mathematical operations. The variable
Y = 2 · X is not the same as Z = X + X (see exercises below).
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Figure 7: Probability mass func-
tion of a random variable obtained
by flipping a fair coin and adding
the (numerical) outcome to the
outcome of throwing a fair dice.

Exercise 5. Let Xdice be the random variable that maps each roll of a fair
six-sided dice onto its numerical outcome.

1. What is the support of Xdice?

2. Write down, for each n in the support of Xdice, the probability P(Xdice = n).

3. What is the expected value of Xdice?

Exercise 6. Let Z = Xdice + Xdice be the composite random variable obtained
by adding the number of two (independent) rolls of a fair six-sided dice.

1. What is the support of Z?

2. Write down, for each n in the support of Z, the probability P(Z = n).

3. What is/are the most likely outcome(s)? What is/are the least likely?

4. What is the expected value of Z?

Exercise 7. Let Y = 2 · Xdice be the composite random variable obtained by
throwing a fair six-sided dice once and multiplying the outcome by 2.

1. What is the support of Y?

2. Write down, for each n in the support of Y , the probability P(Y = n).

3. What is/are the most likely outcome(s)? What is/are the least likely?

4. What is the expected value of Y?
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