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Propositional logic and predicate logic give us formulas to talk about the here
and now. For example, the sentence:

The earth is round︸                 ︷︷                 ︸
p

is to be understood as a claim about how the world is like. If we wanted to
check whether this sentence is true or false, we would have to go search this
world, the actual world that we live in.

Yet, much of human language involves imaginary circumstances, ways in
which the world could have been but isn’t. For example, in order to evaluate
whether the following sentences are true:

It is logically necessary that︸                                ︷︷                                ︸
�

the earth is round︸                  ︷︷                  ︸
p

Alex believes that︸                  ︷︷                  ︸
�a

the earth is round︸                  ︷︷                  ︸
p

it does not suffice to just check the actual shape of the earth. We need to
consider different (imaginary) possibilities of how the world could have been.
We call these ways the world could have been possible worlds. To determine
the truth or falsity of sentences like the above, we need to determine whether
certain possible worlds (here: worlds in which the earth is not round) have
certain properties, such as whether they are compatible with the rules of logic
or with what Alex considers possible.

Many natural language expressions carry a modal meaning component. In
English, there are words like should, could, possibly, need to, be required and
many more. In order to capture such modal meaning, modal logics provide a
formal language with which we can express what is true in the actual world
and what is true in other possible worlds. To do so, modal logics usually have
(at least) these two modal operators:

operator neutral paraphrase natural language cues
^ It is possible that ... might, may, conceivably, . . .
� It is necessary that ... must, have to, necessarily, . . .

There are different kinds of modal logic, depending on the kind of modal
meaning we would like to capture. Indeed, there are many different kinds of
modalities, also referred to as modal flavors:

(i) what one ought to do given one’s parents’ rules and regulations;
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(ii) what one ought to do given a country’s law;

(iii) what is logically necessary;

(iv) what an agent believes to be true or possible;

. . . and more.

Different types of modality require different assumptions about the logical
properties of the modal operators. In this way, we can think of modal logics
as tools for conceptual analysis of the logical properties that characterize
concepts like belief, logical necessity, obligation etc.1 Here, we will have a 1Saying that modal logics are tools for

investigating such notions, does not mean
that it is uncontroversial that they are the
only or the right tool for this purpose. From
a linguistic point of view, formal analyses
of the meaning of modal meaning —like in
deontic or epistemic modals, conditionals or
imperatives— build on ideas from (vanilla)
modal logic, as introduced here, but may
add more complexity, e.g., ordering on
possible worlds.

look at a modal propositional logic for talking about beliefs and knowledge, a
so-called epistemic modal logic.

1 The language of epistemic modal logic

Modal propositional logic (ModLog) extends propositional logic by includ-
ing the new operators ^ and �. To make things more interesting, we will
have one pair of operators ^i and �i where i is a variable for one of several
agents. We will interpret a formula ^iϕ as: “agent i considers ϕ to be possi-
ble;” and �iϕ as: “agent i believes that ϕ is true.” In this way, we will be able
to formally express sentences like “Alex believes that Bo considers it possible
that the earth is not round” as �a^b¬p.

1.1 Formulas

Let P be a set of proposition letters and letA be a set of agents. The lan-
guage LP,A of ModLog is the set of all formulas which are recursively
defined as follows:

(i) Every proposition letter is a formula.

(ii) If ϕ is a formula, so is ¬ϕ, �iϕ and ^iϕ for each i ∈ A.

(iii) If ϕ and ψ are formulas, so are:
a. (ϕ ∧ ψ) b. (ϕ ∨ ψ) c. (ϕ→ ψ) d. (ϕ↔ ψ)

(iv) Anything that cannot be constructed by (i)–(iii) is not a formula.

Here are examples of well-formed formulas of our multi-agent epistemic
logic with paraphrases (where agent a is Alex, and b is Bo):

�a(p→ q) Alex believes that if p, then q.

p→ ^a�bq If p is true, then Alex considers it possible that
Bo believes that q.

�a p ∧ �b p ∧ ¬�a�b p Both Alex and Bo believe that p, but Alex
doesn’t believe that Bo believes it.
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1.2 Semantics of modal logic

The semantics of ModLog is defined in terms of so-called modal models.
Similar to PropLog and PredLog, a modal model will tell us whether any
given formula is true or false. But while models in PropLog and PredLog
were representations of just one possible world, modal models comprise
(possibly: infinitely) many possible worlds all at once.

Modal models. A modal model for the language LP,A is a tripleM = 〈W,V, (Ri)i∈A〉

such that:2 2Modal models are also often called
Kripke structures, named after the logician
and philosopher of language Saul Kripke.W is a set of (possible) worlds,

V : W × P → {0, 1} is a valuation function assigning a unique truth value to
every proposition letter for every possible world, and

for each agent i ∈ A, Ri ⊆ W × W is an accessibility relation between
possible worlds.

Accessibility relations are interpreted as follows: if the actual world is w,
then agent i considers possible all the worlds that can be “accessed” or “seen”
via relation Ri from w. We write wRiv for 〈w, v〉 ∈ Ri and introduce the
notation:

Ri(w) = {v ∈ W | wRiv}

to refer to the set of accessible worlds for agent i from world w.

Single-agent example. For a simple example, let us just consider a case with a
single agent first, which is Alex: A = {a}. We are interested in Alex’s beliefs
about tomorrow’s weather. For simplicity, we consider three possible states of
the weather: it’s either rainy, cloudy or sunny. We can model this in terms of
three proposition letters: P = {r, c, s}. For simplicity, let’s consider just four
possible worlds, W = {w1,w2,w3,w4}. We need to define a valuation function
that maps every pair consisting of a possible world and a proposition letter
onto a truth value. This could be written like so: V(w1, r) = 1, V(w1, c) = 0
and so on. Here is more a compact representation of the valuation function
for this model:3 3This looks suspiciously like a truth-

table, but it is not. Not all logically possible
worlds are listed (because we do not need
them in this example). Also, there are rows
(w1 and w4) with exactly the same truth-
value assignments (we need them to model
different beliefs, see below).

world r c s
w1 1 0 0
w2 0 1 0
w3 0 0 1
w4 1 0 0

Let’s furthermore assume the following accessibility relation:

Ra = {〈w1,w2〉 , 〈w1,w3〉 , 〈w2,w2〉 , 〈w2,w3〉 , 〈w3,w2〉 , 〈w3,w3〉 , 〈w4,w4〉}
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Figure 1 represents the whole modal model in a much more intelligible
way. The diagram shows, for each possible world, the set of all proposition
letters that are true in this world. Labelled arrows are used to represent the
accessibility relation for each agent. Since we only consider a single agent,
all arrows are (superfluously) labelled with a.

w1

V : r

w2

V : c

w3

V : s

w4

V : r

a

a a

a

a
a

Figure 1: Example of a modal
model for Alex’s beliefs about
tomorrow’s weather.

What beliefs does Alex hold according to the model in Figure 1? — Actu-
ally, that depends on which of the four worlds we consider to be the reference
world, i.e., the world we consider to be actual for the purpose of analysis. If
w1 is the reference world (we can also say: “in world w1”), Alex believes that
it might be cloudy and that it might be sunny, but that it will not rain. This
is because the worlds accessible from w1, according to Alex’s accessibility
relation, include only the two worlds w2 and w3 where it is cloudy and sunny
respectively: Ra(w1) = {w2,w3}. So, in world w1 Alex rules out the possibility
of rain (even though that is the true weather for tomorrow, unbeknownst to
Alex); Alex rules in the possibilities of cloudy and sunny weather, so that
Alex is, after all, not entirely sure about the weather.

In worlds w2 and w3, Alex holds the exact same beliefs as in w1. This is
because we have the same set of accessible worlds for the first three worlds:

Ra(w1) = Ra(w2) = Ra(w3) = {w2,w3}

In w1 these beliefs are false (w1 is a rain-world, but Alex excludes rain), in
w2 and w3 they are not (e.g., w2 is a cloudy world and Alex considers cloudy
weather to be possible).

Finally, in world w4 Alex’s accessible worlds are Ra(w4) = {w4}. So, in w4,
Alex entertains only one relevant possibility. Alex is maximally opinionated,
i.e., not uncertain at all. Alex believes (truthfully) that it will rain.

Truth conditions for ModLog. Truth conditions for formulas of ModLog are
defined relative to pointed models. IfM = 〈W,V, (Ra)a∈A〉 and w ∈ W, the
pairM, w is a pointed model. A valuation function VM,w for a pointed model,
assigns truth values to each formula of ModLog as follows: For proposition
letters p ∈ P, the model’s internal valuation function V decides on truth or
falsity:4

4Notice that the function VM,w on the
left-hand side is the “global” valuation
function that builds on the pointed model to
assign truth values to all formulas, while the
valuation function V on the right-hand side
is the valuation function inside of modelM
gives truth values to only proposition letters
(for a given world).
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VM,w(p) = 1 iff V(w, p) = 1

Formulas with main operators from propositional logic are treated as before:

VM,w(¬ϕ) = 1 iff VM,w(ϕ) = 0

VM,w(ϕ ∧ ψ) = 1 iff VM,w(ϕ) = 1 and VM,w(ψ) = 1

VM,w(ϕ ∨ ψ) = 1 iff VM,w(ϕ) = 1 or VM,w(ψ) = 1

VM,w(ϕ→ ψ) = 0 iff VM,w(ϕ) = 1 and VM,w(ψ) = 0

VM,w(ϕ↔ ψ) = 1 iff VM,w(ϕ) = VM,w(ψ)

What is new is the treatment of modal operators. For these, the accessibility
relations are important.5 5Essentially, modal operators are

like quantifiers from predicate logic, but
quantifying over “accessible worlds.”VM,w(�iϕ) = 1 iff VM,v(ϕ) = 1 for all v ∈ Ri(w)

VM,w(^iϕ) = 1 iff VM,v(ϕ) = 1 for some v ∈ Ri(w)

Crucially, the semantics for modal operators shifts the reference world, so to
speak, switching from pointed modelM,w toM, v for some accessible world
v ∈ Ri(w). In this way, we can also give a meaning to nested modal operators,
as the following example demonstrates.

A more complex example. Figure 2 shows an example of a modal model for
two agents (A = {a, b}, Alex and Bo) and just two propositions letters
(P = {p, q}). This model only has three possible worlds W = {w, u, v}. The
diagram shows the set of all proposition letters that are true in each world.
Labelled arrows are used to represent the accessibility relation for each agent.

�b(¬p ∧ ¬q)

“Bo believes that p and q are false”

¬p ∧ �a p

“Alex falsely believes that p is true”

¬�aq ∧ ¬�a¬q

“Alex is uncertain about q”

¬�b p ∧ �a�b p

“Alex falsely believes that Bo believes p”

¬�a�bq ∧ ¬�a¬�bq

“Alex is uncertain whether Bo believes q”

�a((q→ �bq) ∧ (¬q→ �b¬q))

“Alex believes that Bo knows whether q”

w
V : ∅

v
V : p, q

u
V : p

a
b

a

a, b

a

a, b

Figure 2: Example of a modal
model for two agents.



modal logic 6

The formulas on the left-hand side of Figure 2 are all true in world w. To
check that, for example, VM,w(¬�a�bq ∧ ¬�a¬�bq) = 1, we can reason as
follows:

VM,w(¬�a�bq ∧ ¬�a¬�bq) = 1

iff VM,w(¬�a�bq) = 1 and VM,w(¬�a¬�bq) = 1

Consider the first conjunct:

VM,w(¬�a�bq) = 1

iff for some w′ ∈ Ra(w) VM,w′ (�bq) = 0

iff for some w′ ∈ Ra(w′) for some w′′ ∈ Rb(w′) VM,w′′ (q) = 0

which is true if we set w′ = w′′ = u

Consider the second conjunct:

VM,w(¬�a¬�bq) = 1

iff for some w′ ∈ Ra(w) VM,w′ (¬�bq) = 0

iff for some w′ ∈ Ra(w) VM,w′ (�bq) = 1

iff for some w′ ∈ Ra(w) for all w′′ ∈ Rb(w′) VM,w′ (q) = 1

which is true if w′ = v, since Rb(v) = {v} and q is true in v

1.3 Validity, entailment etc.

The notions of validity, entailment, tautology, contradiction and contingency
are defined essentially in the same way as for PropLog and PredLog. We
only need to talk about truth at a pointed model. For example, we say that
ϕ is a tautology of ModLog whenever VM,w(ϕ) = 1 for all pointed models
M,w.

However, depending on the kind of modal concept we would like to cap-
ture, different modal logics might want to place additional restrictions on
which pointed models they consider to begin with. Especially, it is common
to impose additional constraints on the nature of the accessibility relation.
This is the topic of the next section, which investigates constraints on the
accessibility relation for consistent and introspective beliefs. As a result, we
actually have multiple notions of validity, entailment and so on. For example,
we would say that ϕ is a tautology in the ModLog of consistent and intro-
spective beliefs (see next section) whenever VM,w(ϕ) = 1 for all pointed
modelsM,w which satisfies the additional requirements we impose to guar-
antee consistent and introspective beliefs.

2 The logic of rational belief

So far, we have not put any constraints on the accessibility relations in our
modal models. But, in order to represent beliefs that are “rational” in a cru-
cial sense, we should. For example, we should rule out that Ri(w) = ∅ for
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some agent i and world w, because that would mean that agent i believes any-
thing at this world, including logical contradictions (which isn’t very rational,
right?). This is to say that we would require rational agents to hold consistent
beliefs that are contradiction-free. We can ensure contradiction-freedom by a
constraint on admissible modal models, called seriality:

Seriality: for all i and w: Ri(w) , ∅

or, in other words, there is always at least one accessible world. We can then
prove the following:

Claim 1. If a modal model’s accessibility relation is serial, no agent can
believe in a contradiction.

Proof. LetM,w be a pointed model with Ri(w) the accessible worlds for
agent i at w. Take an arbitrary contradiction ϕ. Being a contradiction entails
that VM′,v(ϕ) = 0 for allM′ and worlds v. Now assume towards contradiction
that i believes ϕ in w forM, which means that VM,w(�iϕ) = 1. This entails
that for all v ∈ Ra(w) we have VM,v(ϕ) = 1. By seriality, there must therefore
be at least one world v ∈ Ra(w) with VM,v(ϕ) = 1. But there cannot be any
world that makes ϕ true, with ϕ being a contradiction. Thus, our assumption
that i believes ϕ in w forM cannot be true. �

Moreover, we might want to put additional constraints on higher-order
beliefs of an agent. A higher-order belief of agent i is a belief of i about their
own beliefs, e.g., that Alex believes that Alex considers it possible that ϕ
(�a^aϕ). A common requirement for rational higher-order beliefs is positive
introspection: if Alex believes that ϕ, then Alex believes that they believe ϕ.
Positive introspection is guaranteed by transitive accessibility relations.

Positive Introspection: for all i: Ri is transitive

Claim 2. If an agent i’s accessibility relation is transitive in modelM, then
VM,w(�iϕ→ �i�iϕ) = 1 for all w in that model.

Proof. LetM have a transitive accessibility relation Ri. Suppose towards
contradiction that VM,w(�iϕ → �i�iϕ) = 0 at some world w. That can only
be the case if VM,w(�iϕ) = 1 and VM,w(�i�iϕ) = 0. From VM,w(�i�iϕ) = 0
we infer that there is a w′ ∈ Ri(w) such that there is some w′′ ∈ Ri(w′) such
that VM,w′′ (ϕ) = 0. Since, by Ri is assumed to be transitive, we derive that
w′′ ∈ Ri(w). But that contradicts VM,w(�iϕ) = 1, which we have derived
previously. �

A final requirement on rational higher-order beliefs, which is often made
but more controversial, is that rational agents should also have negative intro-
spection: if Alex does not believe that ϕ, then Alex believes that they don’t
believe ϕ. Negative introspection is guaranteed by Euclidean accessibility
relations. A relation R ⊆ W × W is Euclidean iff for all w, u, v ∈ W: if wRu
and wRv, then uRv.
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Negative Introspection: for all i: Ri is Euclidean

Claim 3. If an agent i’s accessibility relation is Euclidean in modelM, then
VM,w(¬�iϕ→ �i¬�iϕ) = 1 for all w in that model.

Proof. LetM have a Euclidean accessibility relation Ri. Suppose towards
contradiction that VM,w(¬�iϕ→ �i¬�iϕ) = 0 at some world w. That can only
be the case if VM,w(¬�iϕ) = 1 and VM,w(¬�i�iϕ) = 0. From the former we
learn that there is a world w∗ ∈ Ri(w) such that VM,w∗ (ϕ) = 0. From the latter
we learn that for all world w′ ∈ Ri(w) it holds that VM,w′ (�iϕ) = 1. But if the
relation is Euclidean, then any world w′ ∈ Ri(w) must also “see” w∗, so that is
a contradiction. �

We say that an agent’s beliefs are consistent and introspective if all three
conditions (seriality, positive & negative introspection hold). We can sum-
marize the requirements of “rational” beliefs more succinctly, because it
follows from the above definitions that agent i’s beliefs are consistent and
introspective iff for all w ∈ W:

(i) Ri(w) , ∅

(ii) Ri(w) = Ri(v) for all v ∈ Ri(w).

Intuitively, for all possible worlds, there is at least one world agent i considers
possible, and the worlds accessible by agent i form a “fully connected cloud”
in which every world has access to all and only worlds in that cloud.6 6We could have given this simpler defi-

nition of “rational” beliefs in the first place.
But this would not allow us to systematically
study deviations from this norm of ratio-
nality of beliefs. Formulating constraints in
terms of properties of accessibility relations
give the logician more grip to tune her
system of modal logic in exactly the way
she wants it to be. This is similar to the
granularity and variability we get for sys-
tems of logical reasoning defined in terms of
natural deduction rules. Indeed, in a natural
deduction system for modal logic, we would
see deduction rules that correspond directly
to certain properties of the accessibility
relations.
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Exercise 1. Translate the following sentences into epistemic modal logic.
Use as your translation key: p “the earth is round”, q “the moon is made of
cheese”, “a” Alex, and b “Bo.”

(i) If Alex believes that the moon is made of cheese, then Alex also be-
lieves that the earth is not round.

(ii) Bo believes that Alex thinks it’s possible that Bo believes that the moon
is made of cheese.

(iii) Alex considers it possible that, if the moon is made of cheese, then Bo
believes it.

(iv) Whatever Bo believes about whether the earth is round, Alex believes
the same.

(v) Alex is uncertain about whether Bo believes that Alex believes that the
moon is made of cheese.

Exercise 2. Here is a full mathematical specification of a modal logical
language and a modal modelM:

P = {p, q}, A = {a, b}, W = {w1,w2,w3,w4}

V(w1, p) = V(w1, q) = 1, V(w2, p) = 1,V(w2, q) = 0

V(w3, p) = 0,V(w3, q) = 1, V(w4, p) = 1,V(w4, q) = 1

Ra = {〈w1,w2〉 , 〈w2,w3〉 , 〈w4,w3〉}

Rb = {〈w1,w4〉 , 〈w2,w4〉 , 〈w3,w4〉 , 〈w4,w1〉 , 〈w4,w4〉}

1. Draw the model as a diagram like in Figure 2.

2. Determine the truth value for the following:

a VM,w1 (�a p)

b VM,w1 (�a p ∧ �a^a¬p)

c VM,w3 (�a(p ∧ ¬p))

d VM,w4 (p→ �b p)

3. Does this model satisfy the constraints on rational (higher-order) beliefs?
What minimal changes to the accessibility relations would make it satisfy
these constraints? Which of the previous truth-values in pointed models
change when you look at rational beliefs?
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3 Excursion: Applications of modal logic in linguistics and beyond

Beyond a formalization of (rational) beliefs and means to fix the truth-
conditions for statements about them, epistemic modal logics have many
other applications for linguistics and other neighboring fields.

3.1 Strict conditionals

The truth-conditional semantics for the material conditional p → q does
not square very well with common intuitions about the meaning of natural
language “if . . . , then . . . ” sentences. If Jones says “It’s false that if p, then
q,” they are not saying that p is true and q is false, but that is exactly what the
truth-table for p→ q would give us.

An alternative analysis for natural language conditionals, which is maybe
better (but still not unproblematic), is that of the strict conditional. According
to a strict conditional analysis, we would translate “if p, then q” to something
like �i(p → q), where i is the speaker. So, we would treat a conditional
sentence as (possibly: implicitly) modalized; a statement about the ways the
world could be that the speaker considers possible. If Jones says “It’s false
that if p, then q,” this would be translated as ¬� j(p → q), which is much
weaker than before, as it only requires that Jones thinks that it is conceivable
that p is true but q is false.

3.2 Common ground

In communication, we must keep track of who knows what. Otherwise, we
risk redundancy and boredom or miscommunication and frustration. Leading
theories of pragmatic language use therefore assume that interlocutors keep
track of a common ground which (among other things) contains the shared
beliefs of all participants in a conversation. Modal logics of belief help define
such inter-personal notions like mutual belief or common belief.
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