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1 Semantic vs. syntactic approach to logical inference

The most central goal of logic is to capture which inferences are correct and
which are not. Given premises ϕ1, . . . , ϕn and conclusion ψ we want to know
whether the argument schema ϕ1, . . . , ϕn/ψ is an instance of “good” logical
reasoning.

The notion of logical validity is one way of addressing this issue. We
said that the argument schema ϕ1, . . . , ϕn/ψ is logically valid (notation:
ϕ1, . . . , ϕn |= ψ) iff any valuation function V that makes all premisses
ϕ1, . . . , ϕn true also makes the conclusion ψ true. The definition of logical
validity takes a semantic approach to logical inference in the sense that it
uses the semantic notion of valuation functions, i.e., constructions that are
meant to capture the meaning of formulas.

We can also take a syntactic approach to delineating what is “good” log-
ical reasoning and what is not. In this approach we would characterize the
argument schema ϕ1, . . . , ϕn/ψ as an instance of good logical reasoning iff
there exists a derivation1 which, intuitively speaking, starts with the pre- 1In the following use the terms deriva-

tion and (formal) proof interchangeably.misses as assumptions and then leads to ψ, following only acceptable rules
of inference. This approach is syntactic in the sense that the rules used in the
derivation are in a sense blind to the semantic meaning of formulas. They are
simple rewrite-rules that do not depend on the meaning (truth or falsity) of
the formulas involved but only look at their syntactic form.2 2They are rules that a computer could

carry out, say, also on a fragment of natural
language sentences without having to have
any idea of what these sentences mean.

Figure 1 gives a sketch of a natural deduction derivation for argument
schema p ∨ (q ∧ ¬q), p → r / r. Starting with the premisses as assumptions,
we use a finite set of derivation steps to end up with the desired conclusion r.
Generally speaking, a derivation of natural deduction is a finite sequence of
formulas such that every formula is either

(i) an assumption,

(ii) an additional assumption, or

(iii) it is introduced by a legitimate derivation rule based on previous formu-
las in the sequence.

If a derivation of ψ from premisses ϕ1, . . . , ϕn exists, we write ϕ1, . . . , ϕn ` ψ.
We will introduce the set of derivation rules for our system of natural deduc-
tion presently. But first we want to concentrate on the conceptual motivation
for having such a system in the first place.
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1. p ∨ (q ∧ ¬q) ass.
2. p→ r ass.
... [ . . . derivation steps . . . ]
n. r

Figure 1: Sketch of a natural de-
duction derivation for argument
schema p ∨ (q ∧ ¬q), p→ r / r.

2 Soundness & completeness

Ideally, the semantic definition of “good inference” (in terms of valuation
functions) and the syntactic definition of it (in terms of derivations) coincide.
In other words, we would really like to have a theorem that tells us that, for
any argument schema ϕ1, . . . , ϕn/ψ it holds that:

ϕ1, . . . , ϕn ` ψ iff ϕ1, . . . , ϕn |= ψ

The left-to-right direction (“if `, then |=”) is called soundness of the
derivation system. Soundness requires that whatever can be syntactically
derived (what can be proved in the system) is actually logically valid. In other
words, soundness requires that only logically valid conclusions can be de-
rived. Proving soundness is usually easy: we just need to make sure that each
derivation rule is “correct.”

The right-to-left direction (“if |=, then `”) is called completeness of the
derivation system. Completeness requires that we have enough derivation
rules to make sure that we can provide a derivation for all logically valid
argument schemas. In other words, completeness requires that all logically
valid conclusions can be derived. Proving completeness is usually much more
difficult than proving soundness.

The system of natural deduction introduced in the following is both sound
and complete. A proof of either is beyond the scope of this introductory
course.

3 Symbiosis of semantic & syntactic approach

Why would we want to have two tools that do the same thing? — Good
question. Several reasons.

First, the definitions of |= and ` are nicely complementary: one is a univer-
sal statement (all valuations . . . ), the other is an existential statement (there
exists a derivation . . . ):

ϕ1, . . . , ϕn ` ψ iff ϕ1, . . . , ϕn |= ψ

m m

there is a derivation . . . for all valuations . . .

If ψ is not a good inference from ϕ1, . . . , ϕn, it suffices to give a counterex-
ample in terms of a single valuation function which makes all premises true
and the conclusion false. We do not need to argue why there is no derivation.
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If ψ is a good inference from ϕ1, . . . , ϕn, we do not need to reason about all
valuation functions, but can simply produce a single derivation.

Second, characterizing a logical system as a set of derivation rules pro-
vides a different and highly useful perspective. We can explore alternative
systems by just omitting one or several derivation rules.3 In the natural de- 3This is important for the foundational

question in the Philosophy of Mathematics
regarding which kinds of proof strategies
should be accepted to base our mathematical
knowledge on.

duction system to be introduced below, dropping the controversial derivation
rules ⊥E and ¬¬E gives a system called minimal logic. Adding just ⊥E but
not ¬¬E gives intuitionistic logic.

Third, a proof or derivation system opens doors for a computational,
algorithmic approach to logical inference. Finding a derivation is essentially
a search problem in a large but well-defined search space. Classical Artificial
Intelligence therefore was inspired, if not enabled, by modern logic because
the latter provided a way to capture the basic workings of the rational mind
—drawing correct inferences from a given body of knowledge— based on the
syntactic manipulation of symbolic representations.4 4The computability of logical inference

with syntactic rewrite rules is, admittedly,
less impressive for PropLog where we
can also use truth tables. But for more
complex logics, like predicate logic, this is a
non-trivial asset.

4 Derivation rules of natural deduction

The derivation rules for natural deduction correspond —for the most part—
to rules either introducing or eliminating a sentential connective. The follow-
ing exposition moves from easier to more difficult derivation rules.

4.1 Introduction rule for conjunction ∧I

We may introduce the conjunction ϕ ∧ ψ whenever both the conjuncts ϕ and
ψ are available at previous lines m1 and m2. It does not matter whether m1

occurs before m2 or the other way around.5 5We adopt the same convention of
omitting the outermost parentheses. Strictly
speaking, we should write (ϕ ∧ ψ) in line n.
of this derivation.

Conjunction Intro ∧I

...
...

m1 ϕ

...
...

m2 ψ

...
...

n ϕ ∧ ψ ∧I, m1, m2

We can use this rule to show that p, q, r ` (r ∧ p) ∧ q like so:
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1 p ass.

2 q ass.

3 r ass.

4 r ∧ p ∧I, 3, 1

5 (r ∧ p) ∧ q ∧I, 4, 2

4.2 Elimination rule for conjunction ∧E

If we have the conjunction ϕ ∧ ψ, we are allowed to also derive each con-
junct.6 6It is not necessary to derive both, we

can also derive only one of the conjuncts.

Conjunction Elim ∧E

...
...

m ϕ ∧ ψ

...
...

n1 ϕ ∧E, m

n2 ψ ∧E, m

We can use this new rule to show that p ∧ q ` q ∧ p like so:

1 p ∧ q ass.

2 p ∧E, 1

3 q ∧E, 1

4 q ∧ p ∧I, 3, 2

4.3 Elimination rule for implication→E

If we have ϕ → ψ and ϕ somewhere in our derivation (no matter which one
comes first), we can derive ψ.

Implication Elim→E

...
...

m1 ϕ→ ψ

...
...

m2 ϕ

...
...

n ψ →E, m1, m2

Using this rule, we can show that p ∧ r, r → q ` p ∧ q:
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1 p ∧ r ass.

2 r → q ass.

3 p ∧E, 1

4 r ∧E, 1

5 q →E, 2, 4

6 p ∧ q ∧I, 3, 5

4.4 Introduction rule for implication→I

The introduction rule for implication is slightly more complex. The idea is
this. We can introduce ϕ → ψ if it is possible to derive ψ from the additional
assumption that ϕ. We therefore allow additional, temporary assumptions
to be introduced in order to make “thought experiments” like imagining that
some formula was given as well. We use special notation to note where such
an additional assumption was made and where this assumption is dropped
again.7 We are not allowed to use any of the formulas derived in lines m to 7Notice that we do not need to write

down which previous lines this rule operates
on as this is implicit in the notation used for
marking the “thought experiment” or better
put: the scope of the additional assumption.

n − 1 after dismissing the additional assumption in line n.

Implication Intro→I

...
...

m ϕ add. ass.
...

...

n − 1 ψ

n ϕ→ ψ →I

We can use this rule to show that ` (p ∧ q)→ q:8 8Notice that we do not have any pre-
misses here. It can be shown that ` ψ iff ψ is
a tautology (see exercises below).1 p ∧ q add. ass.

2 q ∧E, 1

3 (p ∧ q)→ q →I
Another example, with explicit assumptions is the following derivation

showing that (p ∧ q)→ r ` (q ∧ p)→ r:
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1 (p ∧ q)→ r ass.

2 q ∧ p add. ass.

3 q ∧E, 2

4 p ∧E, 2

5 p ∧ q

6 r →E, 1, 5

7 (q ∧ p)→ r →I

4.5 Introduction rule for disjunction ∨I

A disjunction ϕ ∨ ψ can be introduced whenever at least one disjunct is
available in the derivation.

Disjunction Intro ∨I

...
...

m ϕ

...
...

n1 ϕ ∨ ψ ∨I, m

n2 ψ ∨ ϕ ∨I, m

4.6 Eliminiation rule for disjunction ∨E

Intuitively, we can conclude χ from a disjunction ϕ ∨ ψ when χ follows from
ϕ and then χ also follows from ψ.

Disjunction Elim ∨E

...
...

m1 ϕ ∨ ψ

...
...

m2 ϕ→ χ

...
...

m3 ψ→ χ

...
...

n χ ∨E, m1, m2, m3

Here is an example derivation using ∨E showing that p ∨ q ` q ∨ p:
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1 p ∨ q ass.

2 p add. ass.

3 q ∨ p ∨I, 2

4 p→ (q ∨ p) →I

5 q add. ass.

6 q ∨ p ∨I, 5

7 q→ (q ∨ p) →I

8 q ∨ p ∨E, 1, 4, 7

4.7 Elimination rule for negation ¬E

Negation is tricky in natural deduction. Though we will speak of an elimi-
nation rule for negation, strictly speaking we cannot just eliminate negation
if we have a formula ¬ϕ. But we can draw inferences from the negation ¬ϕ
which are “reductive” in a sense: if we have derived both ¬ϕ and ϕ we have
derived a contradiction, which can be very informative.9 So, the elimination 9Remember that part of the strategy

of an indirect proof is to make a certain
assumption in order to show that this will
result in a contradiction.

rule for negation can best be thought of as an introduction rule for the sign ⊥
which we use as a special symbol for a contradiction.10

10Strictly speaking, we should introduce
⊥ into the language of PropLog as a special
formula, which can be used exactly like a
proposition letter. We should then say that
for all V it holds that V(⊥) = 0.

Negation Elim ¬E

...
...

m1 ¬ϕ

...
...

m2 ϕ

...
...

n ⊥ ¬E, m1, m2

4.8 Introduction rule for negation ¬I

The rule for introducing a negation is similar to the first steps an indirect
proof.11 We make an additional assumption that ϕ. If we manage to derive

11It is not the exact same as an indirect
proof. An indirect proof assumes the nega-
tion of what needs to be shown, so some
¬ϕ. Using the rule ¬I, we might be able
to conclude that ¬¬ϕ. But, to complete
the indirect proof, we would also need
another application of the rule ¬¬E, which
is introduced below.

from this assumption a contradiction (denoted as ⊥), we derive ¬ϕ.12 12Negation introduction is essentially
a derivation of ϕ → ⊥ which is logically
equivalent to ¬ϕ.
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Negation Intro ¬I

...
...

m ϕ add. ass.
...

...

n − 1 ⊥

n ¬ϕ ¬I

Here is an example derivation using ¬E and ¬I showing that ` ¬(p ∧ ¬p):

1 p ∧ ¬p add. ass.

2 p ∧E, 1

3 ¬p ∧E, 1

4 ⊥ ¬E, 2, 3

5 ¬(p ∧ ¬p) ¬I

4.9 Repetition rule R

We allow to just repeat any previously derived formula. This is really just for
readability of a derivation.

Repetition

...
...

m φ

...
...

n φ R, m

4.10 Falsum elimination rule ⊥E

The derivation rules introduced so far are still not enough to produce a
derivation for every valid argument schema. One example is the logically
valid argument schema p ∨ q, ¬p / q. In order to obtain a system in which
p ∨ q,¬p ` q, we need to introduce another rule, such as the (in)famous ex
falso sequitur quodlibet (⊥E) rule.13 The ⊥E rule allows for the derivation 13It is rather difficult to prove that there

cannot be a derivation without this (or an
equivalent rule). For our purposes, let’s just
accept that this is so.

of any formula if a contradiction has been derived. This is useful, of course,
particularly when the contradiction is derived from an additional assumption,
as in the introduction of implication (see example below).
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⊥E

...
...

m ⊥

...
...

n ϕ ⊥E, m

Here is a derivation showing that p ∨ q,¬p ` q:

1 p ∨ q ass.

2 ¬p ass.

3 p add. ass.

4 ⊥ ¬E, 2, 3

5 q ⊥E, 4

6 p→ q →I

7 q add. ass.

8 q R, 7

9 q→ q →I

10 q ∨E, 1, 6, 9

4.11 Double-negation elimination rule ¬¬E

While it may seem innocuous to conclude ϕ from a doubly negated statement
like ¬¬ϕ, from the point of view of derivations (think: proofs), this is not so.
In fact, the rules introduced so far do not allow for the elimination of double
negation. We have to introduce a separate rule for this.

Double-Neg Elim ¬¬E

...
...

m ¬¬ϕ

...
...

n ϕ ¬¬E, m

Using double-negation elimination we can show that ` p ∨ ¬p:
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1 ¬(p ∨ ¬p) add. ass.

2 p add. ass.

3 p ∨ ¬p ∨I, 2

4 ⊥ ¬E, 1, 3

5 ¬p ¬I

6 p ∨ ¬p ∨I, 5

7 ⊥ ¬E, 1, 6

8 ¬¬(p ∨ ¬p) ¬I

9 p ∨ ¬p ¬¬E, 8

Exercise 1. Give a derivation in natural deduction for each of the following
argument schemas.

(i) p, q, r ` (p ∧ q) ∧ r

(ii) ` p→ p

(iii) p→ (q→ r), p, q ` r

(iv) p ∨ (p ∧ q) ` p

Exercise 2. Assuming soundness and completeness of natural deduction,
prove the following claims:

(i) ` ψ iff ψ is a tautology

(ii) ϕ ` ⊥ iff ϕ is a contradiction


	Semantic vs. syntactic approach to logical inference
	Soundness & completeness
	Symbiosis of semantic & syntactic approach
	Derivation rules of natural deduction

