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Abstract. This paper summarizes the essence of a recent game theo-
retic explanation of free choice readings of disjunctions under existential
modals ([8]). It introduces principles of game model construction to rep-
resent the context of utterance, and it spells out the basic mechanism of
iterated best response reasoning in signaling games.
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1 Free Choice Disjunctions & Game Theory

Contrary to their logical semantics, disjunctions under modal operators as in
(1a) may receive free-choice readings (fc-readings) as in (1b) ([12]).

(1) a. You may take an apple or a pear. ♦(A ∨B)

b. You may take an apple and you may take a pear. ♦A ∧ ♦B

This inference is not guaranteed by the standard logical semantics which treats
disjunction as truth-functional connective and the modal as an existential quan-
tifier over accessible worlds. Of course, different semantics of disjunctions or
modals are conceivable and have been proposed by, for instance, [12], [18] or [1].
But, all else being equal, a pragmatic solution that retains the logical semantics
and treats fc-readings as Gricean inferences seems preferable (cf. the arguments
in [16]).

Unfortunately, a näıve approach to Gricean scalar reasoning does not suffice.
If we assume that the set of expression alternatives with which to compare an
utterance of (1a) contains the simple expressions in (2), we run into a problem.

(2) a. You may take an apple. ♦A

b. You may take a pear. ♦B

Standard scalar reasoning tells us that all semantically stronger alternatives are
to be inferred not to be true. This yields that �¬A and that �¬B are true,
which contradicts (1a) itself.

This particular problem has a simple solution. [14] observe that the fc-
reading follows from näıve scalar reasoning based on the alternatives in (2) if we
use the already exhaustified readings of the alternatives as in (3).
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(3) a. You may take an apple, but no pear. ♦A ∧ ¬♦B

b. You may take a pear, but no apple. ♦B ∧ ¬♦A

Truth of (1a) together with the falsity of both sentences in (3) entails the fc-
reading in (1b).

There is clearly a certain intuitive appeal to this idea: when reasoning about
expression alternatives it is likely that potential pragmatic enrichments of these
may at times be taken into account as well. But when and how exactly? Standard
theories of scalar reasoning do not integrate such nested pragmatic reasoning.
This has been taken as support for theories of local implicature computation in
the syntax where exhaustifity operators can apply, if necessary, several times ([5,
7]). But the proof that such nested or iterated reasoning is very much compatible
with a systematic, global, and entirely Gricean approach amenable to intuitions
about economic language use is still up in the air.

Enter game theory. Recent research in game theoretic pragmatics has pro-
duced a number of related models of agents’ step-by-step pragmatic reasoning
about each others’ hypothetical behavior ([17, 2, 10]). This is opposed to the
more classical equilibrium-based solution concepts which merely focus on stable
outcomes of, mostly, repeated play or evolutionary dynamics. The main argu-
ment of this paper is that such step-by-step reasoning, which is independently
motivated, explains free-choice readings along the lines sketched above: early
steps of such reasoning establish the exhaustive readings of alternative forms,
while later steps of the same kind of global reasoning can pick on previously
established readings.

In order to introduce and motivate this game theoretical approach, two sets of
arguments are necessary.1 Firstly, we need to settle on what kind of game model
is required in order to represent conversational moves and their interpretation.
This is to be addressed in section 2. Secondly, we need to spell out a solution
concept by means of which pragmatic language use can be explained in the
chosen game models. This is the topic of section 3. Finally, section 4 reviews
briefly how this approach generalizes.

2 Interpretation Games as Context Models

It is standard in game-theoretic pragmatics to assume that an informative as-
sertion and its uptake can reasonably be modelled as a signaling game. More
specifically then, the pragmatic interpretation of assertions can be modelled by
a particular kind of signaling game, which I will call interpretation game. These
latter games function as representations of the context of utterance (as con-
ceived by the receiver) and are constructed from a given target expression whose
interpretation we are interested in, together with its natural Neo-Gricean alter-
natives and their logical semantics. Let me introduce both signaling games and
interpretation games one after the other.
1 These arguments can only be given in their bare essentials here (see [8] for the full

story).
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Signaling Games. A signaling game is a simple dynamic game with imperfect
information between a sender and a receiver. The sender has some private in-
formation about the state of the world t which the receiver lacks. The sender
chooses a message m from a given set of alternatives, all of which we assume
to have a semantic meaning commonly known between players. The receiver ob-
serves the sent message m and chooses an action a based on this observation.
An outcome of playing a signaling game for one round is given by the triple t,
m and a. Each player has his own preferences over such outcomes.

More formally speaking, a signaling game (with meaningful signals) is a tuple

〈{S, R} , T, Pr,M, [[·]] , A, US ,UR〉

where sender S and receiver R are the players of the game; T is a set of states
of the world; Pr ∈ ∆(T ) is a probability distribution over T , which represents
the receiver’s uncertainty which state in T is actual;2 M is a set of messages
that the sender can send; [[·]] : M → P(T ) \ ∅ is a denotation function that gives
the predefined semantic meaning of a message as the set of all states where that
message is true; A is the set of response actions available to the receiver; and
US,R : T ×M ×A → R are utility functions for both sender and receiver.

Interpretation Games. For models of natural language interpretation a special
class of signaling games is of particular relevance. To explain pragmatic infer-
ences like implicatures we should look at interpretation games. I assume here
that these games can be constructed generically from a set of alternatives to the
to-be-interpreted expression, together with their logical semantics. Here are the
assumptions and the construction steps.

Firstly, the set of receiver actions is equated with the set of states A = T
and the receiver’s utilities model his interest in getting to know the true state
of affairs, i.e., getting the right interpretation of the observed message:

UR(t, m, a) =

{
1 if t = a

0 otherwise.

Moreover, in the vein of [9], we assume that conversation is a cooperative effort
—at least on the level of such generic context models— so that the sender shares
the receiver’s interest in correct interpretation:3

US(t,m, a) = UR(t, m, a).

The set T of state distinctions is to be derived from the set M of messages
given by some (normal, natural, Neo-Gricean) set of alternative forms to the

2 As for notation, ∆(X) is the set of all probability distributions over set X, Y X is
the set of all functions from X to Y , X : Y → Z is alternative notion for X ∈ ZY ,
and P(X) is the power set of X.

3 Notice that this implicitly also commits us to the assumption that all messages are
equally costly, or, if you wish, costless.
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target sentence whose implicatures we are interested in. Clearly, not every pos-
sible way the world could be can be distinguished with any set M . So we should
restrict ourselves to only those states that can feasibly be expressed with the lin-
guistic means at hand. What are those distinctions? Suppose M contains only
logically independent alternatives. In that case, we could in principle distinguish
2M possible states of the world, according to whether some subset of messages
X ⊆ M is such that all messages in X are true, while all messages in its comple-
ment are false. (This is what happens in propositional logic, when we individuate
possible worlds by all different valuations for a set of proposition letters.) But
for normal pragmatic applications the expressions in M will not all be logically
independent. So in that case we should look at states which can be consistently
described by a set of messages X ⊆ M all being true while all expressions in
its complement are false. Moreover, since at least the target message may be
assumed true for pragmatic interpretation, we should define the set of states of
the interpretation game as given by the set of all subsets X ⊆ M containing the
target message such that the formula∧

X ∧ ¬
∨

M \X

is consistent. With this, also the semantic denotation function [[·]] is then straight-
forwardly defined as:

[[m]] = {t ∈ T | m ∈ t} .

Finally, since we are dealing with general models of utterance interpretation,
we should not assume that the receiver has biased beliefs about which specific
state obtains. This simply means that in interpretation games Pr(·) is a flat
probability distribution.

Example. To give a concrete example, here is how to construct an interpretation
game for the target expression in (1a). Everything falls into place once a set of
alternatives is fixed. To keep the exposition extremely simple, let us first only
look at the set of messages in (4). (See section 4 for more discussion.)

(4) a. You may take an apple or a pear. m♦(A∨B)

b. You may take an apple. m♦A

c. You may take a pear. m♦B

Based on these alternatives, there are three states we need to distinguish:

tA =
{
m♦A,m♦(A∨B)

}
tB =

{
m♦B,m♦(A∨B)

}
tAB =

{
m♦A,m♦B,m♦(A∨B)

}
.

Here, tA is a state where the hearer may take an apple but no pear, and tAB is
a state where the hearer may take both an apple and a pear. These states yield
the interpretation game in figure 1. Notice that we consider only these states,
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Pr(t) aA aB aAB m♦A m♦B m♦(A∨B)

tA
1/3 1,1 0,0 0,0

√
−

√

tB
1/3 0,0 1,1 0,0 −

√ √

tAB
1/3 0,0 0,0 1,1

√ √ √

Fig. 1. Interpretation game constructed from (1a) and (4)

because these are the only distinctions we can make between worlds where the
target message (1a) is true that can be expressed based on consistent valuations
of all alternatives. Certainly, in the present case, this is nearly excessively sim-
ple, but it is not trivial and, most importantly, there is still room for pragmatic
interpretation: there are still many ways in which sender and receiver could co-
ordinate on language use in this game. What is needed is a solution concept that
singles out uniquely the player behavior that explains the free choice inference.

3 Iterated Best Response Reasoning

Generally, behavior of players is represented in terms of strategies. A pure sender
strategy s ∈ S = MT is a function from states to messages and a pure receiver
strategy r ∈ R = AM is a function from messages to actions. A pure strategy
profile 〈s, r〉 is then a characterization of the players’ joint behavior in a given
signaling game. For instance, the tuple:

s =

 tA 7→ m♦A

tB 7→ m♦B

tAB 7→ m♦(A∨B)

 r =

m♦A 7→ tA
m♦B 7→ tB
m♦(A∨B) 7→ tAB

 (1)

is a strategy profile for the game in figure 1. And a special one, indeed. It
corresponds to the intuitive way of using the corresponding natural language
expressions: the interpretation of m♦A, for instance, is the exhaustive reading
that only A, but not B is allowed; and the interpretation of m♦(A∨B) is the free
choice inference that both taking A and taking B are allowed. This is therefore
what a solution concept is required to predict in order to explain fc-readings
based on the game in figure 1.

But the strategy profile in (1) is not the only one there is. Also, the rather
unintuitive pooling strategy profile

s =

 tA 7→ m♦(A∨B)
tB 7→ m♦(A∨B)
tAB 7→ m♦(A∨B)

 r =

m♦A 7→ tAB
m♦B 7→ tAB
m♦(A∨B) 7→ tAB

 (2)

is conceivable. What is worse, both strategy profiles describe an equilibrium
state: given the behavior of the opponent neither player has an incentive to
deviate. But, clearly, to explain the fc-reading, the profile in (1) should be
selected, while the profile in (2) should be ruled out. In other words, we need a
mechanism with which to select one equilibrium and rule out others.
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IBR Models. One way of looking at an iterated best response model (ibr model) is
exactly that: a plausible mechanism with which reasoners (or a population) may
arrive at an equilibrium state (rather than another). An ibr model assumes that
agents reason about each other’s behavior in a step-by-step fashion. The model is
anchored in näıve behavior of level-0 players that do not take opponent behavior
into account, but that may be sensitive to other non-strategic, psychological
factors, such as, in our case, the semantic meaning of messages. Players of level-
(k + 1) assume that their opponent shows level-k behavior and play a best
response to this belief.4

Here is a straightforward ibr sequence as a solution concept for signaling
games. Näıve players of level-0 are defined as playing some arbitrary strategy
that conforms to semantic meaning. For the sender, this yields:

S0 = {s ∈ S | ∀t ∈ T : t ∈ [[s(t)]]} .

Level-0 senders are characterized by the set of all pure strategies that send only
true messages. For interpretation games, näıve receiver types receive a similarly
straightforward characterization:

R0 = {r ∈ R | ∀m ∈ M : r(m) ∈ [[m]]} .

Level-0 receivers are characterized by the set of all pure strategies that interpret
messages as true.

In order to define level-(k + 1) types, it is necessary to define the notion of
a best response to a belief in level-k behavior. There are several possibilities of
defining beliefs in level-k behavior.5 The most convenient approach is to assume
that agents have unbiased beliefs about opponent behavior. Unbiased beliefs in
level-k behavior do not favor any one possible level-k behavior, if there are sev-
eral, over any other, and can therefore be equated simply with a flat probability
distribution over the set of level-k strategies.

Turning first to higher-level sender types, let us write Rk(m,a) for the prob-
ability that a level-k receiver who is believed to play a random strategy in Rk

will play a after observing m. Then level-(k + 1) senders are defined by

Sk+1 =

{
s ∈ S | s(t) ∈ arg max

m∈M

∑
a∈A

Rk(m,a)×US(t, m, a)

}

as the set of all best responses to that unbiased belief.
For higher-level receiver types the same standard definition applies once we

have characterized the receiver’s posterior beliefs, i.e., beliefs the receiver holds
about the state of the world after he observed a message. These need to be
4 Models of this kind are good predictors of laboratory data on human reasoning (see,

for instance [3]), but also solve conceptual issues with equilibrium solution concepts
(see [6]). Both of these aspects make ibr models fit for use in linguistic applications.

5 This is the crucial difference between various ibr models such as given by [4], [11]
and [8], for instance.
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derived, again in entirely standard fashion, from the receiver’s prior beliefs Pr(·)
and his beliefs in sender behavior as given by Sk. Let Sk(t, m) be the probability
that a level-k sender who is believed to play a random strategy in Sk will send
m in state t. A level-(k + 1) receiver has posterior beliefs µk+1 ∈ (∆(T ))M

calculated by Bayesian conditionalization, as usual:

µk+1(t|m) =
Pr(t)× Sk(t, m)∑

t′∈T Pr(t′)× Sk(t′,m)
.

Level-(k+1) receivers are then defined as best responding to this posterior belief:

Rk+1 =

{
r ∈ R | r(m) ∈ arg max

a∈A

∑
t∈T

µk+1(t|m)×UR(t,m, a)

}
.

This last definition is incomplete. Bayesian conditionalization is only defined
for messages that are not surprise messages. A surprise message for a level-
(k + 1) receiver is a message that is not used by any strategy in Sk in any state.
A lot can be said about the proper interpretation of surprise messages (see the
discussion in [11, 8, 15]). This is the place where different belief revision strategies
of the receiver could be implemented, if needed or wanted. For the purposes of
this paper it is sufficient to assume that whatever else the receiver may come
to believe if he observes a surprise message, he will stick to the belief that it
is true. So, if for some message m we have Sk(t, m) = 0 for all t, then define
µk+1(t|m) = Pr(t| [[m]]).

Example. The simple ibr model sketched here does what we want it to: it
uniquely singles out the intuitive equilibrium state in equation (1) for the game
in figure 1. To see how this works, and to see where ibr may rationalize the use
of exhaustified alternatives in Gricean reasoning, let us calculate the sequence
of reasoning starting with R0 for the simple game in figure 1 (the case starting
with S0 is parallel):6

R0 =

m♦A 7→ tA, tAB
m♦B 7→ tB, tAB
m♦(A∨B) 7→ tA, tB, tAB

 S1 =

 tA 7→ m♦A

tB 7→ m♦B

tAB 7→ m♦A,m♦B


R2 =

m♦A 7→ tA
m♦B 7→ tB
m♦(A∨B) 7→ tA, tB, tAB

 S3 =

 tA 7→ m♦A

tB 7→ m♦B

tAB 7→ m♦A∨B


R4 =

m♦A 7→ tA
m♦B 7→ tB
m♦(A∨B) 7→ tAB

 .

Näıve receiver behavior only takes semantic meaning into account and this is
what S1 plays a best response to. Given S1, message m♦A is interpreted exhaus-
tively by R2, as meaning “you may do A, but not B” (and similarly for m♦B),
6 Sets of pure strategies Z ⊆ XY are represented by listing for each x ∈ X the set of

all y ∈ Y such that for some strategy z ∈ Z we have z(x) = y.
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while message m♦(A∨B) is a surprise message, and will be interpreted merely as
true. This makes m♦(A∨B) the only rational choice for S3 to send in tAB, so that
in one more round of iteration we reach a fixed point equilibrium state in which
R4 assigns to m♦(A∨B) the fc-reading that he may do A and that he may do B.
In sum, the fc-reading of m♦(A∨B) is derived in two steps of receiver reasoning
by first establishing an exhaustive interpretation of the alternatives, and then
reasoning with this exhaustive interpretation to arrive at the fc-reading.

4 IBR Reasoning: The Bigger Picture

The previous two sections have tried to give, as short and yet accessible as pos-
sible, the main mechanism of ibr reasoning and the demonstration that ibr
reasoning can account for fc-readings of disjunctions. Many assumptions of this
approach could not have possibly been spelled out sufficiently, and so the im-
pression may arise that ibr reasoning, as outlined here, is really only arbitrarily
designed to deal with a small problem of linguistic interest. This is, decidedly,
not so. There are good and independent motivations for both game model con-
struction and solution concept, and both in tandem do good explanatory work,
both conceptually and empirically (see [2, 11, 8]).

Moreover, it should be stressed that the ibr approach also handles more com-
plex cases than the easy example discussed above, of course. Most importantly,
it predicts well also when other scalar contrasts, such as given by (5a) or (5b),
are taken into account as well.

(5) a. You must take an apple or a pear. m�(A∨B)

b. You may take an apple and a pear. m♦(A∧B)

Including more alternative messages results in bigger context models that in-
clude more state distinctions. But still ibr reasoning gives intuitive results. For
instance, [8] spells out the ibr reasoning based on a set of alternatives that
includes (4) and the conjunctive alternative in (5b). Doing so, we derive that
(1a) is taken to implicate that ♦(A ∧ B) is false. This is as it should be: in a
context where the conjunctive alternative (5b) is salient, this inference should be
predicted, but for the fc-reading alone the simple alternatives as in (4) should
suffice. Similar considerations apply to the stronger modal alternative in (5a).

Generalizing the result further, it is possible to show that for any n-place case
of the form ♦(A1∨· · ·∨An) we derive the inference that ♦Ai under ibr logic. The
argument that establishes this result is a so-called unravelling argument which
I can only sketch here: in the first step (of receiver reasoning) all “singleton”
messages of the form ♦Ai are associated with their exhaustive readings; in the
second step all two-place disjunctions ♦(Ai ∨ Aj), i 6= j, are associated with
states in which exactly two actions are allowed one of which must be Ai or Aj ;7

7 In order to make this inference more specific, as it clearly should be, a slightly more
careful setup of the reasoning sequence is necessary than given here. But this is a
technical problem that does not disturb the conceptual point that is of relevance.
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continuing in this way, after n rounds of reasoning the form ♦(A1 ∨ · · · ∨ An)
gets the right interpretation that all actions Ai are allowed.

Interestingly, ibr does not need to assume conjunctive alternatives even for
the general n-place case, while [14]’s approach has to.8 To see this, look at the
three-placed case ♦(A ∨ B ∨ C) with only alternatives ♦A, ♦B and ♦C. The
exhaustive readings of these are given in (6).

(6) a. ♦A ∧ ¬♦B ∧ ¬♦C

b. ♦B ∧ ¬♦A ∧ ¬♦C

c. ♦C ∧ ¬♦A ∧ ¬♦B

But truth of ♦(A ∨B ∨ C) together with the falsity of all sentences in (6) does
not yield the fc-reading that any of A, B or C are allowed. To establish the
fc-reading, we also need the alternatives ♦(A∧B), ♦(A∧C) and ♦(B∧C) with
their exhaustive readings in (7).

(7) a. ♦(A ∧B) ∧ ¬♦C

b. ♦(A ∧ C) ∧ ¬♦B

c. ♦(B ∧ C) ∧ ¬♦A

If we then want to account for the presence of the fc-reading in the absence
of the scalar inference that ♦(A ∧ B ∧ C) is false, we need to assume that all
alternatives with two-placed conjunctions are given, but not the three-placed
conjunctive alternative. This is not impossible, but also not very plausible.

Finally, let me also mention for the sake of completeness that the ibr ap-
proach also deals with free choice readings of disjunctions under universal modals
in the exact same fashion as outlined here. A parallel account also deals with
the structurally similar inference called simplification of disjunctive antecedents
as exemplified in (8).

(8) a. If you take an apple or a pear, that’s okay.

b. If you take an apple, that’s okay. And if you take a pear, that’s also
okay.

The ibr model is also capable of dealing with epistemic ignorance readings such
as forced by (9).

(9) You may take an apple or a pear, but I don’t know which.

To capture these, however, the game models have to be adapted to include also
possible sender uncertainty (see [8] for details).

8 And with it, in slightly amended form, the syntactic account of [7].
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