Hands-on non-technical tutorial for Bayesian mixed
effects regression

Michael Franke & Timo Roettger

Generalized linear mixed models are very versatile and handy tools for
statistical inference. Bayesian approaches to applying these models
have recently become increasingly popular. This tutorial provides an
accessible, non-technical introduction to the use and feel of Bayesian
mixed effects regression models. The focus is on data from a factorial-
design experiment.

This tutorial should take you about 1 hour.

Motivation & intended audience

This tutorial provides a very basic introduction to Bayesian regression mod-
eling using R (R Core Team, 2017). We wrote this tutorial with a particular
reader in mind. If you have used R before and if you have a basic under-
standing of linear regression and now you want to find out what a Bayesian
approach has to offer, this tutorial is for you. In comparison to other introduc-
tions (e.g. Sorensen, Hohensteinb, and Vasishth, 2016), this tutorial remains
very conceptual. We don’t want to “sell Bayes” to you, and we do not want
to scare you away with mathematical details. We just want to give you an im-
pression of how a Bayesian regression analysis looks and feels. So no reason
to be afraid! But also: no reason to be bored, because we will cover all the
essential concepts and we will explain how to run and interpret the output of a
Bayesian regression analysis using the wonderful R package brms written by
Paul Buerkner (2016).

If you don’t have any experience with regression modeling, you will
probably still be able to follow but you might also want to consider doing a
crash course. To bring you up to speed, we recommend the excellent two-part
tutorial by Bodo Winter (2013) on mixed effects regression in a non-Bayesian
—a.k.a. classical or frequentist— paradigm. In a sense, this tutorial could
be considered part three of Bodo’s nice and lofty introduction. We will, for
example use the same data set.

This tutorial contains text boxes (with a gray background) which con-
tain additional background information on some topics. The information is
sometimes a bit technical but never absolutely necessary for understanding
the main ideas. So, feel free to read or skip any of the text boxes to suit your
needs.

To follow this tutorial, you should have R installed on your computer
(https://www.r-project.orq). Unless you already have a fa-
vorite editor for tinkering with R scripts, we recommend to try out RStudio

(https://www.rstudio.com). You will also need some packages, Remember that you can install a pack-
age called XYZ with the command
install.packages (' XYZ').


https://www.r-project.org
https://www.rstudio.com
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which you can import with the following code:

igsssssdizsaasddaasdsddizasadssisadsddiaasasdsiasaadii

2| ## package includes and options
G i

5| # package for convenience functions (e.g. plotting)
6| library (tidyverse)

8| # package for Bayesian regression modeling
9| library (brms)
i
for parallel computing
1| options (mc.cores = parallel::detectCores())

0| # option for Bayesian regression models: use all available cores

Data, research questions & hypotheses

Imagine we are experimental researchers. Therefore, we collect data to an-
swer questions of interest about how nature works. For example, we might
want to know whether voice pitch differs across female and male speakers,
and whether it differs across social contexts (say: informal and polite con-
texts). — To answer our questions, we come up with a nifty experimental
design, we lure a group of people into the lab, we ask them to say different
words in different social contexts, we record their voices, and extraxt some
numbers from these recordings, for example, the pitch values of their voices.
We then want to find out whether our data provide evidence for any assumed
relationships. So far so good.

In this tutorial, we are looking at data just like this (following Winter,
2013). To load the data into your session, run the following code:

1 # load the data into variable blitedata’

githt

2| politedata = read_csv(’https:
michael-franke/b:
politeness

Type head (politedata) and you should see the first lines of the imported
data:

1| > head(politedata)
2 subject gender sentence context pitch
<chr> <chr> <chr> <chr> <dbl>
4 1 F1 F s1 pol 213.
s| 2 F1 F S1 inf 204.
6 3 F1 F S2 pol 285.
4 F1 F S2 inf 260.
5] 5 F1 F S3 pol 204.

This data set contains information about different subjects, with an anony-

If you do not want to copy-paste, all code
and data for this tutorial is also available for
download here: https://github.com/
michael-franke/bayes_mixed_
regression_tutorial

The data is originally from research pre-
sented by Winter and Grawunder (2012)

If you are familiar with the previous tutorials
by Winter (2013), it might help to know that
we massaged the data a bit, e.g., renaming
of variables or removing a line with missing
data, so it differs slightly from the data set
used in earlier tutorials by Winter.

Here, we show only part of the output
that you might see when executing this
command.


https://github.com/michael-franke/bayes_mixed_regression_tutorial
https://github.com/michael-franke/bayes_mixed_regression_tutorial
https://github.com/michael-franke/bayes_mixed_regression_tutorial
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mous identifier stored in variable subject. Because voice pitch is highly
dependent on gender, we stored whether our subjects are F(emale) or M(ale)
in variable gender. Subjects produced different sentences (stored in vari-
able sentence), and the experiment manipulated whether the sentence was
produced in a polite or an informal context. This is indicated by the variable

context. Crucially, each row contains a measurement of pitch in Hz stored

in variable pitch.

Often, we are interested in comparing a dependent variable (here
pitch) across different conditions or groups, i.e. independent variables
(here gender and context). Before our data collection, we might have
formulated concrete predictions about the relationship between the depen-
dent variable and the independent variables. For example, we might have
formulated the following three hypotheses:

HI1: Female speakers have a lower average pitch in polite than in informal
contexts.

H2: Male speakers have a lower average pitch in polite than in informal
contexts.

H3: Male speakers have a lower average pitch in informal than female
speakers have in polite contexts.

Exploring the data visually

To get a first idea of possible relationships in our data, let’s plot them. Fig-
ure 1 displays the mean pitch values for each sentence (semi-transparent
points) across gender and attitude. The solid points indicate the mean pitch
values across gender and context. Looking at the plot, we can see that pitch
values from female speakers are generally higher than values from male
speakers (points in left column are higher than in the right column). We also
see that pitch values in the informal context condition are slightly higher
than those in the polite context condition (blue points are slightly higher than
orange points).

Based on keen eye-balling, we might want to shout: “Ha! The data con-
firm all of our hypotheses!” But, of course, we need to be more careful. As
Bayesians, we would like to translate the data into an expression of evi-
dence: does the data provide evidence for our research hypotheses? Or are
the observable differences to meager? — Also, notice that there is quite a lot
of variability between different sentences (the semi-transparent dots). For
example, some values from the informal condition for female speakers (blue
points in left column), are lower than their corresponding polite counterparts.
Similarly, there could be quite some differences between individual speak-
ers. Consequently, what we want is precise estimates of potential differences
between conditions, alongside a measure of certainty around these estimates.

Notice that our hypotheses are formulated
explicitly as comparisons of means /
averages. The statistical model we will

use indeed compares means, and this

is common practice, albeit a particular
assumption worth flagging. Very commonly
this assumption is implicit and so you could
encounter H1 formulated flatly as, e.g.,
“Female speakers’ pitch is lower in polite
than informal contexts.”

Extensive plotting is always recommended
to start data analysis. You need to know
your data inside out. Pictures often reveal
complex relationships much better than
numbers can.

The code needed to generated the picture
in Figure 1 is not reproduced here, but
included in the script in the resources for
this tutorial: https://github.com/
michael-franke/bayes_mixed_
regression_tutorial


https://github.com/ michael- franke/bayes_mixed_ regression_tutorial
https://github.com/ michael- franke/bayes_mixed_ regression_tutorial
https://github.com/ michael- franke/bayes_mixed_ regression_tutorial
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A regression model for our data

Another way of looking at the data in connection with our research hypothe-
ses is in Figure 2. Each cell represents one unique combination of the gender
and the context factor, and the table shows the mean pitch value for each cell.
Our hypotheses can be related to the comparison between some of these cell-
based means. H1 makes a statement about the comparison between cells 1
and 2 (the context effect for female speakers); H2 makes a statement about
cells 3 and 4 (the context effect for male speakers); and H3 makes a statement
about cells 2 and 3 (the difference between informal male speakers and polite
female speakers).

One way of testing our hypotheses using a Bayesian approach to data
analysis, is to ask whether, given the data, the relevant differences between

Figure 1: Basic plot of the data.

Figure 2: Means of each design cell,
together with research hypotheses as
statements about ordinal relations between
cell means.

In technical terms, this table is the
design matrix of our experiment.
We have two factors of interest
context and gender, each with
two levels. The table shows each
combination of levels of all relevant
factors. The cells in this table are
therefore also called design cells.
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cell means are credibly different from zero. This is, as we will see below,
jargon for asking whether, given the data, we should believe that the relevant
cell means are different. The important bit about the Bayesian approach is

in the “credibly different” and the “should believe”. The Bayesian approach
is about updating beliefs (expressed as probability distributions). This may
appear scary or technically involved. But at the end of the day the intuitions
captured by this approach are arguably very natural, and perhaps easier to
understand than the motivations underlying other approaches to data analysis.
Let’s try to tackle this step by step.

First, let us look at the regression model we want to use. As usual in
regression models for factorial designs, like the present one, we assume that
pitch values observed in each cell are samples from some normal distribution,
where each cell ¢; has its own mean ;. We are ultimately interested in the
probability of the proposition that one cell’s mean is bigger than another’s,
i.e., whether y; > ;. Since the latter is equivalent to y; —m; > 0, and
since, let’s say, it is easier to test whether a value is bigger than zero, we can
encode the cell means like in Figure 3. This encoding scheme assumes that
there is a reference level for each factor. Here it is the level female for the
factor gender and the level informal for the factor context. All cell
means can then be expressed in terms of differences between the intercept
Bo which is the cell mean of the cell where all factors have their reference
levels (here, the cell mean for pitch of female speakers in informal contexts)
and deviations from this reference cell for each individual factor (Bpq1e, and
Bpolite)> and a so-called interaction term 561 male-

informal polite
C1 C2
female o Po + Ppol
Po+ Pmale™t
+
male Pot Pmale Ppol * Ppol&male
c3 c4

A Bayesian analysis of a (fixed effects) regression model

Based on our model of how the data was generated, a Bayesian analysis asks:
what should we believe about the values of the coefficients g, Bpol, Smate and

While other approaches to data analysis
might stress the application of statistical
tests, a Bayesian approach puts more
emphasis on the fact that all statistical
inference resolves around a statistical
model; which is usually an assumption about
how the data was generated. This model is,
almost certainly, always false. But even a
false model can be useful; conclusions based
on a false model can be meaningful and
insightful.

This is so-called dummy coding of the
regression coefficients. Other coding
schemes exist.

Figure 3: Coefficients of a dummy-coded
regression model for the factorial 2 X 2
design.
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Bpol&male 7; What values for these parameters are likely, given the data, the
assumed model and our initial beliefs about the parameters?

The R package brms (Buerkner, 2016) makes it easy to run Bayesian
regression models. It uses much the same formula syntax as related packages
for regression analysis. In the case at hand we want to regress the dependent
variable pitch against the independent variables gender and context
and include their interaction. This model is expressed by the formula:

Il # formula for (fixed effects) regression model

2| formulaFE = pitch ~ gender * context

The Bayesian model can then be fitted with the function brm from the
brms package. We only need to specify the formula and supply the data:

# run regression model in brms
modelFE = brm(

formula = formulaFE,
4 data = politedata

The brms packages uses probabilistic programming language Stan in the
background. Essentially, brms writes Stan code and executes it, which is
then translated to C++ (hence the message about “compiling C++” when
you run this code) and used to obtain samples from the posterior distribution,
based on an instance of an algorithm called Hamiltonian Monte Carlo. This
is an instance of a more general class of algorithms, called Markov Chain
Monte Carlo methods. The purpose of these is to return representative sam-
ples from the posterior distribution (without actually having to compute the
exact distribution, which might be intractable). Giving us these samples for a
regression model, is exactly what brm does.

If you just type in mode 1FE, you will see a summary of the obtained
model fit. It should look (modulo stochastic variation) much like the follow-
ing:

These initial beliefs, also called prior
beliefs, are important to get a Bayesian
analysis off the ground; a circumstance
which is discussed controversially. For many
practical purposes, however, the precise
choice of prior is not decisive and tools
like the brms package which we will use
here will default to generically reasonable
choices of priors for your model (more on
this below).

Info Box 1 provides some background

on prior beliefs, likelihood function and
posterior beliefs.



HANDS-ON NON-TECHNICAL TUTORIAL FO

R BAYESIAN MIXED EFFECTS REGRESSION 7

1| > modelFE
Family: gaussian
Links: mu = identity; sigma = identity
4| Formula: pitch ~ gender % context

5 Data: politedata (Number of observations: 83)

6| Samples: 4 chains, each with iter = 2000; warmup = 1000; thin
7 total post-warmup samples = 4000

9| Population-Level Effects:

10 Estimate Est.Error 1-95% CI u-95% CI Eff.S
11| Intercept 260.68 8.07 244.99 276.78

1n| genderM -116.09 11.44 -138.37 -93.80

13| contextpol -27.38 11.33 -50.01 -5.98

14| genderM: contextpol 15.74 16.38 -17.03 49.13

s| Family Specific Parameters:
I Estimate Est.Error 1-95% CI u-95% CI Eff.Sample Rhat
sigma 36.15 2.87 30.93 42.40 3652 1.00

For each parameter,
and Rhat is the
Rhat

Samples were drawn using sampling (NUTS) .
is a crude measure of effective sample size,
scale reduction factor on split chains (at convergence,

1;

Rhat
.00
.00
.00
.00

ample
2409
2094
2092
1831

Eff.Sample
potential
1).

This summary tells us a lot. First, we get information about the model

and the data used (lines 2-5 above). Lines 6 and 7 tell us about the sampling

procedure, e.g., we here have a total of 4000 samples from the posterior
distribution, obtained from 4 chains all of which had 2000 iterations but
discarded the first 1000 as warmup (more on this below). Lines 9-14 are
what is most interesting for evaluating our hypotheses, so we will dwell
extensively on them in a moment. Lines 16—18 contain information in a
format that is similar to that of lines 9-14, but for a different type of model
parameter, namely the standard deviation sigma of the assumed normal
distributions (which describe the distribution of measures in each design

cell). Finally, lines 20-22 contain general information about the model fit and

the information presented in this summary.

Let us now zoom in on the information from lines 9-14 which is theo-
retically most interesting because this is where we find (partial) answers to
the question what we should believe about our research hypotheses. What
these lines give us is a table with four rows, each of which corresponds to
a parameter in the model, namely the coefficients shown in Figure 3. The
variable Intercept refers to our 8y, which represents the mean of cell
1 (female speakers in polite contexts; the “reference cell”). The variable
genderM corresponds to our Smale, contextpol corresponds to our Bpol,
and genderM: contextpol is the interaction term Spol&male- For each
of these parameters, the table contains very useful summary statistics based
on the samples returned from the model fit. We will here be most interested
in the information in columns 1-95% CI and u-95% CI, which give us
the the lower and upper bound of the 95% credible interval for each pa-
rameter, estimated from the posterior samples. More information about the

If the model failed to converge or other
problems occurred, you would see an
informative message in the last part of this
summary.

Intuitively, the 95% credible interval is the
range of values that we can deem credible
enough to care about; the rest is sufficiently
unlikely to (perhaps) be ignored, or at least
be treated as a different category. Formally,
the 95% credible interval is the set of convex
intervals of parameter values such that the
probability density over all intervals sums to
0.95 while no parameter value not included
in any interval has higher probability density
than any point within.
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information in the other columns is in Info Box 2.

For our purposes, the information about 95% credible intervals is most in-
teresting. Take the parameter contextpol, corresponding to our coefficient
Bpol- The 95% Cl is roughly [-50;-6]. This means that we would take values
outside of this interval to be sufficiently unlikely to treat them as “ignorable”.
But that means that we would ignore a very special parameter value for this
parameter (including a substantial region around it), namely 0. In intuitive
terms, this analysis says that we should not believe that O is a credible value
for the coefficient Spo1; rather we should believe that 5, is negative (based
on the priors, the regression model and the data; all of which may be criti-
cally re-assessed if there are good reasons for it). — Hurray! This directly
addresses our first research hypothesis. In a research paper we could now
write: “Based on the regression model, the data suggests that H1 is likely
true.”

How likely is it that 8, is smaller than 0? — It would be even cooler,
if we could put a number to it. In fact, we can. To see how this works, let
us have a more intimate look at the samples that the brm function returns.
We can access the samples of a model fitted with brm with the function

posterior_samples:

1| # extract posterior samples
| post_samples_FE = posterior_samples (modelFE)
3| head (post_samples_FE)

The output of this could look like this:

1| > head (post_samples_FE)

2 b_Intercept b_genderM b_contextpol b_genderM:contextpol sigma lp__
311 255.2955 -106.4147 -24.73881 15.91545 34.24995 -420.0674
i 2 252.4705 -118.6785 -15.69895 22.73200 35.38918 -421.2423
5|3 254.0602 -119.7602 -15.87901 15.45185 35.68362 -420.5696
6| 4 270.1344 -114.0217 -33.74421 26.91341 36.25080 -423.0939
/| 5 275.4422 -122.9397 -37.11601 23.48895 37.45709 -422.0191
8| 6 281.3819 -135.4289 -43.38679 25.46482 38.93948 -423.2867

What you see here is the top 6 rows of a data frame with columns for each
parameter and 4000 rows, corresponding to each sample of that parameter.

We can use these samples to produce a density plot. The plot in Figure 4 The column 1p__ contains the log-
probability of the data for the parame-

. . L. . . terization in each row. This is useful for
rior density. This is, intuitively put, a plot of how much (relative) credence model comparison and model criticism but

shows, for each of the four main model parameters an estimate of the poste-

we, as rational agents, should assign to any particular value of each param- not important for our current adventures.
eter, given the regression model, the specified prior beliefs, and the data.

We see that our beliefs concerning plausible values for the mean of cell 1

(female speakers in polite contexts, the reference cell) should hover around

261. We also see that all values that receive substantial probability density for

contextpol (our Byo1) are negative (as captured in the 95% CI discussed
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above).
b_Intercept b_contextpol
0.04 - 0.03-
0.03-
0.02 -
0.02 -
0.01- 0.01
OOO L ' ' ' ' ' ' 000 i ' ' '
%‘ 240 250 260 270 280 290 =50 -25 0
c
g b_genderM b_genderM.contextpol
0.03-
0.02 -
0.02-
0.01-
0.01-
000 L ' ' ' ' 000 i ' ' ' ' ' '
-150 -125 -100 =75 -50 -25 0 25 50 75
posterior

Now, here comes a nice gadget. Based on the samples obtained for
contextpol (Byo1), it is very easy to estimate our belief that 5, is in-
deed negative. We simply have to calculate the proportion of samples that
were negative, that’s all. For instance, with the code below, which reveals that
the posterior probability, given the data, that Bpe < 0 is about 0.99275, so
very close to certain!

I| # proportion of negative samples for parameter p_contextpol

2| # this number approximates P (beta_pol < 0 | model, data)

;| mean (post_samples_FESb_contextpol < 0)

In sum, we have seen how to run a Bayesian regression analysis with the
brms package and deal with its output. We have also seen that we get output
that is interpretable in terms that also non-statisticians can understand (e.g.,
“The probability of H1, given our model, priors, and data, is more than .99”).

Unfortunately, what we have not seen yet is what our model and data say
about hypotheses 2 or 3. This is because there is no single parameter in the
(dummy-coded) regression model that corresponds to the differences be-
tween cells 3 and 4 (for hypothesis 2) and cells 2 and 3 (for hypothesis 3).
Notice that this problem is not specific to Bayesian analyses, but it is inher-
ent in the way the regression coefficients were set up. However, unlike in
more frequentist/classical analysis, the Bayesian approach allows to recover
information about any derived measure from the obtained samples. Here’s
how.

Take hypothesis 3 which requires us to compare cells 2 and 3. The hypoth-

Figure 4: Posterior density of parameter
values in the fixed-effects regression model

A potential way of testing different hypothe-
ses of the kind we have set our here, is to
run different regression analyses, each with
a different reference cell. But that is tedious.
Moreover, it does not help with hypothesis
3, which compares “diagonally”: there is no
way of changing the reference level of either
factor such that dummy coding gives us a
single coefficient as the difference between
cells 2 and 3.
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esis states that Sy + Bpol > Bo + Bmale, Which reduces to Bpo1 > Bmale. We can

approximate the posterior probability that this is true based on the samples
that we obtained for our model in the same general way as before, namely:

1| # proportion of samples where the mean for cell 2
2| # than that of cell 3
3| # this number approximates P (beta_pol > beta_male

was bigger

4| mean (post_samples_FES$Sb_contextpol - post_samples_FES$Sb_genderM > 0)

model, data)

Based on the samples we obtained, this estimate is 1. That’s a strong re-

sult. If the model were true, then, given the data, our certainty that hypothesis

3 is true should be pretty much almost at ceiling.

In sum, the Bayesian approach to regression modeling allows us to re-
trieve, from just one run of a model, all direct comparisons between cells in
a factorial design. It also returns numeric information which is accessible
and easy to communicate, namely the assignment of (estimated) posterior
probability that a particular hypothesis holds (formalized here as an ordering
relation of design cell means).

The faintr package

To facilitate the comparison of pairs of cells also in bigger factorial designs,
this tutorial comes with a little R package, the faintr package. You can
install the package from GitHub with the devtools package, as follows:

# package to allow installation from github

2| library (devtools)

3| # package with convenience function for Bayesian regression

models for factorial designs

4l install_github ('m ke/bayes_mixed_regression_tutorial
faintr’) # install from GitHub

library (faintr)

ael-frar

The faintr package provides two (hopefully) useful functions. The
function extract_posterior_cell_means takes as input the output
of a factorial-design regression model fitted with brm. It outputs samples for
all design cell means, and a comparison of all design cells against each other.
The function get_cell_comparison takes the same kind of model fit
as input, together with a specification of which two cells to compare against
each other. Using the latter function, the source code provides a convenient
function to produce the posterior probability of the three hypothesis relevant
for this tutorial:

The name faintr is indicative of the
possibility that the package might break
down unexpectedly (we might consider
renaming after more extensive testing),
but also alludes to “factorial design” and
“interpretation” somehow.

10
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1| > get_posterior_beliefs_about_hypotheses_new (modelFE)
2| # A tibble: 3 x 2

3 hypothesis probability

4 <chr> <dbl>

51 Female-polite < Female-informal 0.993

6| 2 Male-polite < Male-informal 0.842

71 3 Male-informal < Female-polite 1

Adding random effects structures

Although the results look quite different, running hierarchical models with
random effects with brms is very similar to the look and feel of non-Bayesian
approaches. Here is a function call to a model with the maximal random
effect structure licensed by the design:

the design

2| # (notice that factor ’'gender’ does not vary for a given value
of variable ’subject’)

3l model_MaxRE = brm(formula = pitch ~ gender * context +

4 (1 + gender % context | sentence) +

5 (1 + context | subiject),
6 data = politedata,
7 control = list (adapt_delta = 0.9)

# hierarchical model with the maximial RE structure licensed by

The outcome of this is model fit is shown here:

11
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12

> model_MaxRE
Family: gaussian
Links: mu = identity; sigma = identity
4| Formula: pitch ~ gender % context + (1 + gender * context | senten
5 Data: politedata (Number of observations: 83)
6| Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
7 total post-warmup samples = 4000

9| Group—-Level Effects:
0| ~sentence (Number of levels: 7)
11 Estimate Est.Error 1-95% CI u-9

12| sd (Intercept) 21.84 9.72 7.40
13| sd (genderM) 11.13 9.07 0.49
14| sd (contextpol) 15.04 11.24 0.55
15| sd (genderM: contextpol) 16.55 13.43 0.76
16| cor (Intercept, genderM) -0.23 0.44 -0.90
17| cor (Intercept, contextpol) 0.01 0.41 -0.74
18| cor (genderM, contextpol) -0.06 0.44 -0.83
19| cor (Intercept, genderM: contextpol) -0.10 0.43 -0.84
20| cor (genderM, genderM: contextpol) -0.03 0.44 -0.82
21| cor (contextpol,genderM: contextpol) -0.15 0.44 -0.87

23| ~subject (Number of levels: 6)

24 Estimate Est.Error 1-95% CI u-95% CI Eff.
25| sd(Intercept) 36.11 18.30 14.60 84.84
2%| sd (contextpol) 9.17 8.73 0.32 32.53
27| cor (Intercept, contextpol) 0.03 0.58 -0.93 0.95

2| Population-Level Effects:

30 Estimate Est.Error 1-95% CI u-95% CI Eff.Sample
31| Intercept 261.92 25.73 213.11 312.17 1088
32| genderM -116.78 35.19 -188.21 -50.38 1011
33| contextpol -27.16 12.44 -51.30 -2.22 2782
34| genderM: contextpol 15.13 16.84 -17.62 47.40 2863

36| Family Specific Parameters:
37 Estimate Est.Error 1-95% CI u-95% CI Eff.Sample Rhat
33| sigma 24.96 2.38 20.73 30.07 3676 1.00

40| Samples were drawn using sampling (NUTS). For each parameter, Eff.S

42| scale reduction factor on split chains (at convergence, Rhat = 1).

ce) + (1 + context |

5% CI Eff.Sample

44.90
33.29
42.49
47.63

0.71
.79
.77
.73
.80
.74

o O O O O

1210
2290
4608

Rhat
1.00
1.00
1.00

ample

11| is a crude measure of effective sample size, and Rhat is the potential

Sample Rhat

1.00
1.00
1.00

2116
2435
1637
2173
4808
4658
2940
5216
3335
3057

Rhat
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

R e e e T T =

subject)

The lines 29-34 again give the estimates of the fixed-effects coefficients,
but we now also obtain information about the parameters implied by the
specified random effect structure. Lines 9-21 cover the by-sentence random
effects, lines 23-27 cover the by-subject random effects. We see from the
95% credible intervals that the only parameters implied by the random effects
structure that does seem to receive sufficient a posteriori credence on non-
trivial values are the by-sentence and by-subject random intercepts.

As for the probability of the hypotheses of interest, we can use the
faintr package and the convenience function defined above to inspect:
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1| > get_posterior_beliefs_about_hypotheses_new (model_MaxRE)
2| # A tibble: 3 x 2
hypothesis probability

4 <chr> <dbl>

51 Female-polite < Female-informal 0.981

6| 2 Male-polite < Male-informal 0.830

/| 3 Male-informal < Female-polite 0.988
Priors

...in progress ...
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Bayesian inference: priors, likelihoods and posteriors

Jones is a rational scientist. She has recently inherited her grandma’s lucky
coin. Grandma used this coin many times during Jones’ childhood to de-
termine whether Jones was allowed a sweet or not. Jones suspects that
grandma’s coin might be a trick coin, but she is not sure. She is determined
to find out. How? Well, naturally, by rationally updating her prior beliefs
about the coin’s bias to obtain a new posterior belief based on empirical
observation (outcomes of coin flips). Central to this updating is Jones’ like-
lihood function, which encodes how likely each relevant coin bias may have
generated the observed data. — Sounds fancifully abstract? It’s actially fairly
intuitive. Consider this example.

Prior beliefs. Jones initially believes that the coin is either biased towards
heads or biased towards tails, and that both of these possibilities are equally
likely. She also believes that, if biased towards heads, the coin is three times
more likely to come up heads; and that, if biased towards tails, the coin is
three times more likely to come up tails. Numerically, Jones’ prior beliefs
can be written as, where 8 € [0; 1] is the coin’s bias: P(§ = 1/3) = 1/2, and
P(0=2/3) =1/a.

Likelihood. The bias 6 is, by definition, the probability of the coin landing
heads on the next trial. Let’s assume that Jones tosses the coin only once (hm,
maybe not so rational a scientist after all? or just too busy?). Let D be the set
of potential outcomes of this experiment, namely D =  {heads, tails}. The
likelihood function determines the likelihood of observing each datumd € D
for each 6, which in our case is just rather trivial: P(D = heads | ) = 6 and
P(D = tails | ) = 1 - 6.

Posterior beliefs. Jones observes that the coin landed heads. What should
she believe now. By Bayes rule her posterior beliefs are defined like so:

P(6)P(D = heads | 9)
Yo P(¢")P(D = heads | ¢)

P(0| D = heads) =

Jones’ posterior belief that the coin is twice as likely to land heads is there-
fore:

P(0 =2/3| D = heads) =
P(0 = 2/3) P(D = heads | § = 2/3)
P(0 =2/3) P(D = heads | § = 2/3) + P(§ = 1/3) P(D = heads | 6 = 1/3)
& =1/
1/22/34-1/21/3

After making her observation, rational Jones believes that the bias towards

heads is twice more likely than the bias towards tails.

Info Box 1: Priors, likelihood and posteriors in Bayesian inference.
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More about the information displayed in the summary output of a brm model
fit

The first column Estimate gives the mean of the obtained samples, thereby
approximating the mean of the posterior distribution (beliefs we should hold)
about each parameter. For example, the parameter Intercept is estimated
to have a mean of about 261, which is (of course) exactly what we calcu-
lated as a mean of the data points in cell 1, as shown in Figure 2. The other
columns give further useful information. Est.Error is the estimation error,

an indication of the certainty we should have about the whole inference pro-
cedure. The columns 1-95% CI and u-95% CI give the lower and upper
bound of the 95% credible interval for each parameter, estimated from the
posterior samples.

The column Ef £ . Sample, for efficient samples, gives a rough measure

of how many of all the samples we took (4000 in our case) are contribut-

ing non-redundant information to our estimation. The higher this number,
the better. Finally, Rhat is a measure of whether the samples obtained are
likely representative of the true distribution. Concretely, it indicates whether
the four chains we ran in parallel all ended up with the same results, so to
speak. If this column contains values bigger than 1.1 this is an indication
that your model fit has not converged. (If your model output indicates non-
convergence, you may want to increase the number of samples, but you
should also consider the possibility that you are trying to fit a model which
cannot be “trained” based on the (perhaps insufficient) data and the particular
method of posterior sampling. For common regression analyses, this will usu-
ally entail considering a simpler model (e.g., with fewer explanatory factors,
less (correlated) random effects, etc.))

Info Box 2: Information in summaries of brm model fits.
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