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Topics for today

1 replicator dynamic

2 evolutionary dynamics of signaling games
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Levels of analysis in EGT

are attractors of
the dynamics

static solutions?

is macro-dynamics
the mean field of the

micro-dynamics?

Static Solutions

Nash equilibrium
evolutionary stability
...

Marco-Dynamics
(Population-Level)

replicator dynamic
best response dynamic
...

Micro-Dynamics
(Agent-Based)

imitate the best
conditional imitation
reinforcement learning
...
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Replicator dynamic

• arguably, the most general formalization of fitness-proportional growth
• mathematically convenient:

• discrete version ; numeric simulation
• continuous version ; mathematical proof

• uniform formalism, multiply interpretable
• clear connection with stability & equilibrium notions
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Utility in Mean-Field Populations
Recap

• let ni be the number of agents playing action ai

• let n be the size of the population
• population aggregate is a probability vector~p where:

pi =
ni
n

• if population is huge, the average payoff of ai is:

U(ai,~p) = ∑
j

pj ×U(ai, aj)

• U(ai,~p) is the fitness of ai (given the population state)
• U(~p) = ∑i pi ×U(ai,~p) is the average fitness in the population
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Discrete-time replicator dynamics: Derivation
Assumptions

Average offspring of an individual playing ai is a positive scaling function F of i’s fitness
U(ai,~p): F(x) = kx with k > 0.
• n′i is the number of individuals playing ai at the next discrete time step
• n′i = ni F(U(ai,~p))

p′i =
n′i

∑j n′j
=

ni F(U(ai,~p))
∑j nj F(U(aj,~p))

=
ni k U(ai,~p)

∑j nj k U(aj,~p)
=

ni U(ai,~p)
∑j nj U(aj,~p)

=
n pi U(ai,~p)

∑j n pj U(aj,~p)
=

pi U(ai,~p)
∑j pj U(aj,~p)

=
pi U(ai,~p)

U(~p)
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Discrete time replicator dynamic

p′i = pi
U(ai,~p)

∑j pj U(aj,~p)
= pi

U(ai,~p)
U(~p)

= proportion of i× fitness of i
average fitness

If pi 6= 0, frequency pi of players of type ai . . .

. . . increases when i’s fitness is higher than average;

. . . decreases when i’s fitness is lower than average;

. . . stays constant when i’s fitness is exactly average.

If pi = 0, then p′i = 0.
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Time series

Coordination: U =

(
1 0

0 1

)
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Time series

Prisoner’s Dilemma: U =

(
2 0

3 1

)
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Time series

Hawks & Doves: U =

(
1 7

2 3

)
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Time series

Coordination: U =

(
1 0

0 2

)
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Source Code for Plots
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Analyzing the replicator dynamics

U =

(
1 0

0 2

)

p′
1
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p2
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Continuous time replicator dynamics
Derivation

ṗi =
dpi(t)

dt
= lim

δt→0

[
pi(t + δt)− pi(t)

δt

]
[def. of derivative]

= p′i − pi [discrete time RD gives limit step]

= pi
U(ai,~p)

U(~p)
− pi [def. of discrete time RD]

= pi
U(ai,~p)−U(~p)

U(~p)
[“payoff-adjusted RD”]

”=” pi [U(ai,~p)−U(~p)] [drop constant denominator]
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Continuous time replicator dynamic

ṗi = pi [U(ai,~p)−U(~p)] = proportion of i× [fitness of i− average fitness]

If pi 6= 0, frequency pi of players of type ai . . .

. . . increases when i’s fitness is higher than average;

. . . decreases when i’s fitness is lower than average;

. . . stays constant when i’s fitness is exactly average.

If pi = 0, then ṗi = 0.
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Conditional imitation
Assumptions

• “mean field population”: huge and homogeneous
• every agent plays fixed strategy for long periods of time
• occasionally i considers to adopt j’s strategy
• switching probability is proportional to how much better j’s strategy is than i’s

Revision protocol

A revision protocol gives the average propensity (non-normalized probability) of agent i
switching to agent j’s strategy:

ρ
~p
ij = pj

[
U(aj,~p)−U(ai,~p)

]
+

= proportion of j × fitness difference between j and i (if j is fitter)
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(e.g. Helbing, 1996; Schlag, 1998)
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Derivation of the replicator dynamic

ṗi = flow into i − flow out of i

= ∑
j

pjρ
~p
ji −∑

j
piρ

~p
ij

= ∑
j

pjpi
[
U(ai,~p)−U(aj,~p)

]
+
−∑

j
pipj

[
U(aj,~p)−U(ai,~p)

]
+

= pi ∑
j

pj

([
U(ai,~p)−U(aj,~p)

]
+
−
[
U(aj,~p)−U(ai,~p)

]
+

)
= pi ∑

j
pj
(
U(ai,~p)−U(aj,~p)

)
= pi

(
∑

j
pj U(ai,~p)−∑

j
pj U(aj,~p)

)
= pi [U(ai,~p)−U(~p)]
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Rest points, dynamic stability & attraction
• A rest point is a state~p with ṗi = 0 for all i.
• a rest point~p is (weakly / Lyapunov) stable iff:

• all nearby points stay
nearby

• for all open neighborhoods U of~p there is a
neighborhood O ⊆ U of~p such that any
point in O never migrates out of U

• a rest point~p is attractive iff:

• all nearby points
converge to it

• there is an open neighborhood U of~p such
that all points in U converge to~p

• basin of attraction of an attractive rest point:
• biggest U with the above property

• a rest point~p is asymptotically stable (aka. an attractor) iff:

• all nearby points
converge to it (on a path
that stays close)

• it is stable and attractive
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Replicator dynamic, equilibrium & evolutionary stability

Equilibrium

1 nes ⊆ rest points

2 snes ⊆ attractors

3 if an interior orbit converges to~p, then~p is a ne

4 if a rest point is stable, then it is a ne

Evolutionary stability
1 esss ⊆ attractors

2 nsss ⊆ Lyapunov stable

3 all interior esss are global attractors,
i.e., attract all interior points

Special case: “potential games” (U = UT)
1 esss = attractors

2 every interior orbit converges (to a
ne)
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(e.g. Hofbauer and Sigmund, 1998)
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Early simulation evidence

In 2-2-2 Lewis games (with equiprobable states),
all simulation runs of the (discrete, symmetric)
RD converged to signaling systems.
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(Skyrms, 1996)
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Postitive result
2-2-2 Lewis game, equiprobable

In a 2-2-2 Lewis game with equiprobable states, the set of initial population states that do
not converge to a signaling system under the replicator dynamics has Lebesgue measure
zero.

Lebesgue measure zero: has an extension that does not stretch across all dimensions.
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(Huttegger, 2007)
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Negative result
2-2-2 Lewis game, non-equiprobable

In a 2-2-2 Lewis game with non-equiprobable states, the set of initial population states
that do not converge to a signaling system under the replicator dynamics has positive
Lebesgue measure.

Reason: there are now mixed nsss; these must be attractors, because they are Lyapunov
stable (generally) and interior points must converge to a nes (partnership games).
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(Huttegger, 2007)
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Negative result
n-n-n Lewis games, equiprobable

In a n-n-n Lewis game with equiprobable states, the set of initial population states that
do not converge to a signaling system under the replicator dynamics has positive
Lebesgue measure.

Reason: there are now mixed neutrally stable strategies (nsss, so-called partial pooling
equilibria).

Basin of attraction: ca. 5% of simulation runs in the symmetric RD converge to partial
pooling equilibria.
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(Huttegger, 2007; Pawlowitsch, 2008)
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Party pooper: partial pooling

ma

mb
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t1
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t3

a1

a2

a3

p

1-p

q

1-q
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(Pawlowitsch, 2008)
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Positive result
3-3-3 Lewis game, equiprobable

In a 3-3-3 Lewis game with equiprobable states, the set of initial population states that do
not converge to a signaling system under the replicator-mutator dynamics (with uniform
small mutation rates) seems to have Lebesgue measure zero.

Replicator-mutator dynamics: replicator dynamics with mutation.
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(Huttegger et al., 2010)
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Upshot

While the evolution of perfect information transfer is not an evolutionary certainty (even
in idealized models), at least partial information transfer seems almost guaranteed by
success-conditioned selection of communicative strategies.
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Homework

read this paper:
• Simon Kirby et al. (2014). “Iterated Learning and the Evolution of Language”. In:

Current Opinion in Neurobiology 28, pp. 108–114
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