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Replicator dynamic & signaling
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MEANING AS CONVENTION

equilibria of signaling games
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SIGNALING THEORY

evolutionary dynamics instead of equilibria

fitness-based selection OR
agent-level learning

meaning as information content

Brian Skyrms (2010) Signals: Evolution,
Learning, and Information
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Topics for today

1 replicator dynamic

2 evolutionary dynamics of signaling games
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Replicator dynamic (discrete)
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Levels of analysis in EGT

are attractors of

the dynamics
static solutions?
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-
is macro-dynamics

Dynamics of signaling
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Micro-Dynamics
(Agent-Based)

imitate the best
conditional imitation
reinforcement learning
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Replicator dynamic

® arguably, the most general formalization of fitness-proportional growth
¢ mathematically convenient:

¢ discrete version ~ numeric simulation
® continuous version ~» mathematical proof

¢ uniform formalism, multiply interpretable

® clear connection with stability & equilibrium notions
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Utility in Mean-Field Populations

Recap

let n; be the number of agents playing action a;

let n be the size of the population

population aggregate is a probability vector p where:
nj

n

if population is huge, the average payoff of g; is:

Ul(a;, P) Zp] x U(ay, aj)

P =

U(a;, pP) is the fltness of a; (given the population state)
* U(p) = L;pi x U(ay,P) is the average fitness in the population
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Discrete-time replicator dynamics: Derivation

Assumptions

Average offspring of an individual playing a; is a positive scaling function F of i’s fitness
U(a, p): F(x) = kx with k > o.
* 1} is the number of individuals playing a; at the next discrete time step

° Tl: =n; ( (ai/p))

pl = n i F(U(a;,P))
! Zj”]/' Zj n; F(u(ﬂj/ﬁ))
_ _nikU(a,p) _  ni Ula;,p)
Yk Ula, ) Yyn; Ula;, p)
_ _"pi U(a;, p) _ b U(a;, p) _Pi U(a;, p)
Zj”Pj u(”jrﬁ) Z]P] (a], ) u(p)
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Discrete time replicator dynamic

) _Ulp) _ Up)
Ly Ulap) P Up)

pi =

If p; # o, frequency p; of players of type g; ...
. increases when i’s fitness is higher than average;
. decreases when ’s fitness is lower than average;

. stays constant when i’s fitness is exactly average.

If p; = o, then p} = o.

Dynamics of signaling
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Time series

Coordination: U
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Time series

Prisoner’s Dilemma: U = <; ?)

1.
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Time series

Hawks & Doves: U = : 7
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Time series

Coordination: U =
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Source Code for Plots

1|## plots the time series of the replicator dynamic for a 2 player symmetric game
2 ### with 2 actions

3

4# imports

5 from numpy import *

& from pylab import *

7 from scipy.integrate import odeint

8
9# utilities of the game
10U = arrayC[[2,€],[3,111)
11

12# starting configurations

13# as proportions of first action

14 s_array = arange(®.02,1,0.02)

15

16# time steps to obtain value for

17 t=arange(@,10, .01)

18

19 def expected_utility(p):

20 return dot(U,array([p,1-p])) # careful: numpy uses the term "dot"-product here,
21 # but it isn't!

22

23 def overall_fitness(p):

24 return dot(expected_utility(p),array([p,1-p1))

25

26 def replicator_dynamics(p,t):

27 return array([p[@]*(expected_utility(p[@]1)[€] - overall_fitness(p[01))])

28

20 for s in s_array:

10 traj = odeint(replicator_dynamics,s,t)
31 plet(t, traj)

32

23 show()

34

17/ 36



Replicator dynamic (discrete) Replicator dynamic (continuous) Dynamics of signaling
00000000000 e 00000000 00000000

Analyzing the replicator dynamics
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Replicator dynamic (continuous)
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Continuous time replicator dynamics

Derivation

o dpit) [Pt 0) — pilt)
' dt st ot

=pi—Pi

_, d4@p

“Pup) 7

o U(a;, p) — U(p)

’ u()

"=" pi [U(a, p) — U(P)]

Dynamics of signaling
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Continuous time replicator dynamic

pi=pi [U(ai, p) — U({P)]

If p; # o, frequency p; of players of type a; ...
. increases when i’s fitness is higher than average;
. decreases when ’s fitness is lower than average;

. stays constant when i’s fitness is exactly average.

If p; = o, then p; = o.
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Conditional imitation

Assumptions

® “mean field population”: huge and homogeneous
¢ every agent plays fixed strategy for long periods of time
® occasionally i considers to adopt j’s strategy

¢ switching probability is proportional to how much better j’s strategy is than i’s

Revision protocol

A revision protocol gives the average propensity (non-normalized probability) of agent i
switching to agent j’s strategy:

pZ = p] [U(ﬂ],ﬁ) - U(“ilﬁ)]+
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Derivation of the replicator dynamic

pi; = flow into i — flow out of i
= ijpfi - Zpipf}
= ZP;P; (a;,P) — ”]/ ZP P] “]r - U(”i/ﬁ)] n
=nLp ([U(as,P) — UG, p)], — U@, P) — U(ai,P)].,)

= PlZP] (ai,p) — (a]/ﬁ))

=pi (ZP;‘U(%?) - ZP]‘U(ﬂj/ﬁ)>
j j

= pi[U(a,p) — U(p)]
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Rest points, dynamic stability & attraction

® A rest point is a state p with p; = o for all i.
® arest point p is (weakly / Lyapunov) stable iff:

¢ all nearby points stay ¢ for all open neighborhoods U of p there is a
nearby neighborhood O C U of p such that any
point in O never migrates out of U
® arest point p is attractive iff:

¢ all nearby points ® there is an open neighborhood U of p such
converge to it that all points in U converge to p
basin of attraction of an attractive rest point:
¢ biggest U with the above property

® arest point p is asymptotically stable (aka. an attractor) iff:

¢ all nearby points ® it is stable and attractive
converge to it (on a path
that stays close)
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Replicator dynamic, equilibrium & evolutionary stability

Equilibrium
1 NEs C rest points
2 SNEs C attractors
3 if an interior orbit converges to p, then p is a NE

4 if a rest point is stable, then it is a NE

Evolutionary stability

. Esss C attractors Special case: “potential games” (U = U’)

1 ESSs = attractors
2 Nsss C Lyapunov stable
2 every interior orbit converges (to a

3 all interior Esss are global attractors, NE)

i.e., attract all interior points
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How do we figure out the behavior at a point?

ESS

NSS

Symmetric Nash
equilibria

States that aren’t

symmetric Nash
equilibria

Asymptotically stable Y
(it's a sink) A

Lyapunov stable, not \d
necessarily a sink A

Rest points, but not
necessarily stable

May be a rest point {if it's a monomorphic
population state or an equilibrium of a
restricted game with extinct strategies),

but cannot attract any points on the state
space’s interior
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Dynamics of signaling

27/ 36



Replicator dynamic (discrete) Replicator dynamic (continuous)
000000000000 00000000

Early simulation evidence

In 2-2-2 Lewis games (with equiprobable states),
all simulation runs of the (discrete, symmetric)
RD converged to signaling systems.

THESTMJHUHT

BRIAMN SKYRMS

Dynamics of signaling
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Postitive result

2-2-2 Lewis game, equiprobable

In a 2-2-2 Lewis game with equiprobable states, the set of initial population states that do
not converge to a signaling system under the replicator dynamics has Lebesgue measure
zero.
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Negative result

2-2-2 Lewis game, non-equiprobable

In a 2-2-2 Lewis game with non-equiprobable states, the set of initial population states
that do not converge to a signaling system under the replicator dynamics has positive
Lebesgue measure.
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Negative result

n-n-n Lewis games, equiprobable

In a n-n-n Lewis game with equiprobable states, the set of initial population states that
do not converge to a signaling system under the replicator dynamics has positive
Lebesgue measure.

partial pooling
equilibria
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Party pooper: partial pooling

Dynamics of signaling
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Positive result

3-3-3 Lewis game, equiprobable

In a 3-3-3 Lewis game with equiprobable states, the set of initial population states that do
not converge to a signaling system under the replicator-mutator dynamics (with uniform
small mutation rates) seems to have Lebesgue measure zero.
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Upshot

While the evolution of perfect information transfer is not an evolutionary certainty (even
in idealized models), at least partial information transfer seems almost guaranteed by
success-conditioned selection of communicative strategies.
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Homework

read this paper:

¢ Simon Kirby et al. (2014). “Iterated Learning and the Evolution of Language”. In:
Current Opinion in Neurobiology 28, pp. 108-114
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