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How to test a hypothesis



How to test a hypothesis

Steps you have to do as a researcher:

1. State your null-hypothesis          and the alternative hypothesis 
a.         is a statement about the population parameter and is the conservative statement

2. Decide significance level
3. Think about your statistical model, develop your test

a. sample space, probability measure, set of possible outcomes, test statistic
4. Only then get the data 
5. Calculate a p-value, making the assumption that          is true
6. Decide to reject or to not reject hypothesis 



Important concepts



Test statistics

Quantity derived from the data, that reduces the data to one value that can be used to perform 
the hypothesis test. E.g. sample mean                                 , sample variance                           , 
number of heads for coin toss                    .

More abstract: quantify, within observed data, behaviour that would distinguish the null from 
the alternative hypothesis.

Has a probability distribution, which is used to compute p-values for the null hypothesis.

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis


Test statistics - example: coin flip

Test whether a coin is fair, flip 24 times. Raw data: c(0, 1, 1, 1,0, ..., 0, 1, 1, 1, 1).

If there is interest in the probability of obtaining a head, only the number                            out 
of the 24 flips that were heads needs to be recorded. 

What generated k?

  

Note that this test statistic reduces 
a set of 24 numbers to 
a single numerical summary.



Sampling distribution

The probability distribution that generates the values that the test statistic can take on is 
called sampling distribution. 

In our previous example is the binomial distribution the sampling distribution: 
Using this sampling distribution, it is possible to compute a p-value for the null hypothesis 
that the coin is fair. 

To sum up:

NULL HYPOTHESIS → DATA → TEST STATISTIC → SAMPLING DISTRIBUTION → P-VALUE 



Model with Binomial 
Distribution



Example: Coin Toss Experiment

- We assume the distribution for the experiment: Binomial -> discrete probability 
distribution, series of similar and independent events, each of which has exactly two 
possible outcomes ("success" or "failure") used to model binary data → is used to 
model the likelihood function

- We assume the parameter we want to make inferences by: θ
- We specify N = number of trials, p = θ = probability of success for each trial, k = 

observed successes (“heads”)

We use this information to obtain the test statistics & sampling distribution!



Set Hypotheses
- wish to make inferences about: θ = probability of success for each trial

- A possible research hypothesis for our example would be: Is the coin fair? 
(two-sided)

H0 = θ = 0.5                       

H1 = θ != 0.5 (departs from H0 left and right)

- conceptually, we assume H0 is true for the population 
- null hypothesis is assumed to be true until evidence indicates otherwise
- researchers work to reject or disprove the null hypothesis 



We observe: 

coin is flipped N= 24 times

k=7 times the coin successfully flipped “heads”

p(here θ) is the probability that the outcome will occur at any particular coin toss (assuming H0, 
we assume θ = 0.5, is a fair coin)

Sampling distribution and the test statistic (k) are now specified:

Lets test our hypothesis!

Example: Coin Toss Experiment



Hypotheses testing
- we need to set a null hypothesis, i.e., a value θ of coin bias θ that we would like to collect 
evidence against → H0 = θ = 0.5 

- if empirical observations are sufficiently unlikely from the point of view of the null-hypothesis 
H0, this should be treated as evidence against the null-hypothesis

- a measure of how unlikely data is in the light of H0 is the p-value

- to obtain a p-value: what is the probability of observing more extreme values (in this case: to 
both ends) compared to what we sampled (k=7) and therefore count as more extreme 
evidence against the chosen null hypothesis? 

- which values for k are less or equally as probable compared to our sample of the test statistic 
k=7?



Source: https://en.wikipedia.org/wiki/One-_and_two-tailed_tests

Area under curve = 
represents 100% of 
all possible events

If we assume H0 to be 
true, values to the left 
and right side of the 
curve become 
increasingly unlikely

If the p-value falls 
within a sufficiently 
unlikely area, this is 
taken as evidence that 
H0 cannot be true for 
a population



- value that occurs at the peak (k=12) represent H0= θ=0.5 → typically, H0 states that 
there is no effect

- as values for k move further away from the peak, it represents larger effect sizes (in 
refuting H0)

- when H0 is true for the population, obtaining samples that exhibit large effects 
becomes less likely, which is why the probabilities for k values taper off to the sides of 
the curve, further from θ=0.5

https://statisticsbyjim.com/glossary/effect/


Sampling distribution shows the probability associated with observed data k=7 highlighted in 
red. Displays the probabilities of obtaining test statistic values when the null hypothesis is correct 

(θ=0.5).

y-axis 
shows 
probability 
to observe 
certain 
measurem
ents

k=12 represents H0 = θ=0.5



- To obtain a p-value:

- sum up all probabilities for observing values equal to or smaller than empirically 
sampled test statistic k (=7)

- In other words: sum over all possible orders of coin-toss-outcome-values with 
probabilities equal to or less than probability of observing k=7

Calculate p-value Two-Tailed



Calculate in R Two-Tailed- handwritten 
function



Sampling distribution shows the values that need to be summed over in red. p-value for the 
observation of k=7 successes in N=24 coin flips. Displays the probabilities of obtaining test 

statistic values when the null hypothesis is correct (θ=0.5).

y-axis shows 
probability to 
observe certain 
measurements



Calculate in R Two-Tailed- built-in 
function



Another possible research hypothesis for our experiment: Is the coin biased towards “heads”?

H0 = θ > 0.5                       H1 = θ =< 0.5

Now we wish to calculate the p-value for data for this model!

- only seeks to measure effect into one direction from H0 (and from the curve)
- what would count as the most extreme evidence against H0?

- We need to adjust what we consider

Calculate p-value One-Tail 



- to obtain a p-value: What are the probabilities of observing values less than or equal 
to test statistic k=7? Sum them!

- values on the right hand side from θ= 0.5 will not serve as evidence against H0 
because all values there are θ>0.5

- the associated p-value must be calculated using a one-sided test, only considering 
values on the left side of the curve

Calculate p-value One-Tail 



Calculate in R One-Tailed - handwritten 
function

- doubling the p value for one‑tailed test results in the p-value for 
two-tailed test for symmetrical sampling distributions!



Sampling distribution shows p-value for the observation of k=7 successes. Displays the 
probabilities of obtaining test statistic values when null hypothesis is correct  (θ>0.5.). 

Sum over all probabilities for observing values smaller than or equal to k only on the 
left-hand side.

.

y-axis shows 
probability to 
observe certain 
measurements

assuming H0 = θ>0.5



Calculate in R One-Tailed- built-in 
function



Significance of p-values
- Fisher: p-values as quantitative measures of strength of evidence against the null hypothesis: 

if you get a result that is barely significant, there is chance that you falsely rejected H0!
Same with results that are barely non-significant, maybe we are falsely keeping H0!

- we say a test result is significant if the p-value of the observed data is lower than a specified α

- we fix the α-level of significance with common values α∈{0.05,0.01,0.001}

- commonly, a significant test results is interpreted as the signal to reject the null hypothesis, to 
render it false

- if your test statistic falls in either critical region, your sample data are sufficiently 
incompatible with the null hypothesis and observing this value is sufficiently unlikely in light 
of the null hypothesis so that you can reject it for the population!



Significance of p-values

α= 0.05

Source: 
https://www.statisticshowto.datasciencecentral.com/what-is-an-alpha-level/

If p-value falls below α, 
results are significant → 
H0 gets rejected!

 α=0.05 translates to 
5% chance of 
observing values for 
test statistic k in this 
area when randomly 
sampling and a 95% 
chance it will be in the 
α-1 area under the 
curve 

 1- α

Sampling dist assuming H0



Source: https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/one-tailed-test-or-two/

1- α 
represents a 
confidence 
intervall = 
certainty/prob
ability any 
random 
sampled k will 
be amongst 
these values



Errors of decision making

In hypothesis tests, two errors are possible: 

- Type I error: Supporting the alternative hypothesis when the null hypothesis is true 
(alpha error)

Example: type I error corresponds to FDA approving a novel drug while it actually has no 
measured effect. H0= drug has no effect; H1= drug has desired effect

- Type II error: Not supporting the alternative hypothesis when the alternative 
hypothesis is true (beta error)

Example: type II error corresponds to FDA rejecting a novel drug although it has the desired 
effect. H0= drug has no effect; H1= drug has desired effect



Errors of decision making

Source: https://www.psychologyinaction.org/psychology-in-action-1/2015/03/11/an-illustrative-guide-to-statistical-power-alpha-beta-and-critical-values

try to minimize both errors 
by determining optimal 
level of significance

Statistical power =  probability that 
an effect will be discovered when 
an effect actually exists

defined as 1 - β where β is the 
probability of making a second type 
of error

If the statistical power is high, the 
probability of committing a Type II 
error decreases

higher for lower alpha



Law of large numbers



The law of large numbers

Imagine you gather a lot of samples from random variables                          that all have the same 
expected value, i.e. 

→ e.g          , where   or e.g.          , where 

You then want to estimate this expected value based on your samples (because you don’t know it yet)

You think the arithmetic mean could be a good estimator of μ: 

The law of large numbers assures that if you gather more and more samples and you compute their 
arithmetic mean, this arithmetic mean will be (almost surely) the expected value



Law of large numbers 

Arithmetic mean calculated for samples from

-                                                                                 - 

Arithmetic means and expected values of the distributions are the same for large n!



The central limit theorem



The Central limit theorem

Imagine you gather samples from random variables                          that all have the          
same expected value and the same (finite) variance, i.e.                       ,                             .

Then for each bunch of samples, e.g.  for each 10 samples, you compute their arithmetic 
mean.

You collect all the arithmetic means (forming a sampling distribution). If you got a sufficient 
amount of means, then:

whatever the distribution of the random variables, the sampling distribution will be the 
Normal distribution                         if the overall sample size n is large enough.

If you normalize the sampling distribution, meaning you subtract the mean      from each 
random variable and multiply by        , it will be                    - distributed.



Central limit theorem

See for yourself!

http://onlinestatbook.com/stat_sim/sampling_dist/index.html


The     - test for goodness of fit 



The        - test for goodness of fit testing

Pearson’s χ2-test for goodness of fit tests whether an observed vector of counts is well 
explained by a given vector of predicted proportion.

“Goodness of fit” is a term used in model checking (a.k.a. model criticism, model validation, 
…). In such a context, tests for goodness-of-fit investigate whether a model’s predictions are 
compatible with the observed data.



The        - test for goodness of fit testing

We need:

- Categorical data (each data observation falls into one of several unordered categories)
- With k categories

- A null hypothesis 
- Vector of probabilities                                that correspond to  our         and gives the 

probability with which a single data observation falls into the i-th category.



An example 
Raw data: c(143, 1, 34, 100, 923, 23, 42, 844, …, 59, 66, 71, 2), counting first digits leads to:

Categorical Data with 9 categories:                                                                         , N = 1000

Vector of probabilities:
                            (nine probabilities, one for each category, summing up to 1.) 



An example

   : the difference from the red bars to the data is not significant.
→        - test for goodness of fit allows us to test whether this data could plausibly have been 
generated by (a model whose predictions are given by) the prediction vector.



Test statistic 

To get the value of the test statistic for the      test, insert all the values: 
-       is the ith entry of vector 
- Nine categories, so k = 9
-     is the ith entry of vector

- n = 1000, all our data together
 



In R

Manually: With in-build test:



Result & Interpretation
The common interpretation of our calculations would be to say that the test yielded no 
significant result, at least at the significance level of α=0.05.

In a research paper we might report this results roughly as follows:

“The observed counts deviated not significantly from what is expected if each 
category (here: first digits) followed the specified probabilities (χ2-test, with      = 0.05 
χ2≈4.2631, df=8 and p≈0.8326). We therefore conclude that there is no evidence to 
reject the hypothesis that our data conforms to the specifies probabilities.”



Homework hints



Homework Hints
Exercise 1: Addressing hypotheses 
about coin flips with hypothesis testing 

- Similar procedure for all three cases: Think about that a point null hypothesis 
(e.g. θ = 0.5) results in a two-sided test, and an interval hypothesis (e.g. θ ≤ 0.5) in a 
one-sided test 



Exercise 2: Pearson’s χ2-test of 
goodness of fit

- Think what the test does, what are your data, your expected probabilities?
- Check how to use the R function:



Exercise 3: Some claims about 
frequentist testing

- Frequentist statistics is all about repetitions. It never puts probabilities into parameter 
values.

- Check the lecture slides/ tutorial slides 



Thank you for listening.

Questions?

https://media.giphy.com/media/9ADoZQgs0tyww/giphy.gif

