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How to test a hypothesis



How to test a hypothesis

Steps you have to do as a researcher:

1. State your null-hypothesis H, and the alternative hypothesis H;
a. H, is a statement about the population parameter and is the conservative statement
2. Decide significance level (y
3. Think about your statistical model, develop your test
a. sample space, probability measure, set of possible outcomes, test statistic
4. Only then get the data
5. Calculate a p-value, making the assumption that H|, is true
6. Decide to reject or to not reject hypothesis Hj



Important concepts



Test statistics

Quantity derived from the data, that reduces the data to one value that can be used to perform

i - 1 i 2 _ 1 n —)2
the hypothesis test. E.g: sample mean 7 — =~ Z?:l x; sample variance g2 — = Zi:,l (z; — )
number of heads for coin toss Z’} T
1=1 "1
More abstract: quantify, within observed data, behaviour that would distinguish the null from
the alternative hypothesis.

Has a probability distribution, which is used to compute p-values for the null hypothesis.


https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis

Test statistics - example: coin flip

Test whether a coin is fair, flip 24 times. Raw data: c(0, 1,1, 1,0,..,0,1, 1, 1, 1).

24
If there is interest in the probability of obtaining a head, only the number k= Zizl Zi out
of the 24 flips that were heads needs to be recorded.

What generated k? Prob. selected values: 0.020629
k ~ Binom(0 = 0.5,n = 24) 0.15-
)
. . . o
Note that this test statistic reduces < 0.10-
a set of 24 numbers to <
©
a single numerical summary. E
£ 0.05-
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Sampling distribution
The probability distribution that generates the values that the test statistic can take on is

called sampling distribution.

In our previous example is the binomial distribution the sampling distribution: & ~ Binom(0 = 0.5,n = 24)
Using this sampling distribution, it is possible to compute a p-value for the null hypothesis
that the coin is fair.

To sum up:

NULL HYPOTHESIS — DATA — TEST STATISTIC — SAMPLING DISTRIBUTION — P-VALUE



Model with Binomial
Distribution



Example: Coin Toss Experiment

- We assume the distribution for the experiment: Binomial -> discrete probability
distribution, series of similar and independent events, each of which has exactly two
possible outcomes ("success" or "failure") used to model binary data — is used to
model the likelihood function

- We assume the parameter we want to make inferences by: 0

- We specify N = number of trials, p = 0 = probability of success for each trial, k =
observed successes (“heads”)

We use this information to obtain the test statistics & sampling distribution!



Set Hypotheses

- wish to make inferences about: 8 = probability of success for each trial
- A possible research hypothesis for our example would be: Is the coin fair?
(two-sided)
HO=6=0.5
H1 =6!= 0.5 (departs from HO left and right)

- conceptually, we assume HO is true for the population
- null hypothesis is assumed to be true until evidence indicates otherwise
- researchers work to reject or disprove the null hypothesis



Example: Coin Toss Experiment

We observe:
coin is flipped N= 24 times
k=7 times the coin successfully flipped “heads”

p(here 0) is the probability that the outcome will occur at any particular coin toss (assuming HO,
we assume 0 = 0.5, is a fair coin)

Sampling distribution and the test statistic (k) are now specified } ~. Binomial(6, N).

Lets test our hypothesis!



Hypotheses testing

- we need to set a null hypothesis, i.e., a value 8 of coin bias 0 that we would like to collect
evidence against - HO =0 =0.5

- if empirical observations are sufficiently unlikely from the point of view of the null-hypothesis
HO, this should be treated as evidence against the null-hypothesis

- a measure of how unlikely data is in the light of HO is the p-value
- to obtain a p-value: what is the probability of observing more extreme values (in this case: to
both ends) compared to what we sampled (k=7) and therefore count as more extreme

evidence against the chosen null hypothesis?

- which values for k are less or equally as probable compared to our sample of the test statistic
k=77



Area under curve =
represents 100% of
all possible events
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Set of possible results

ue (shaded green area) is the probability of an

observed (or more extreme) result arising by chance

If we assume HO to be
true, values to the left
and right side of the
curve become
increasingly unlikely

If the p-value falls
within a sufficiently
unlikely area, this is
taken as evidence that
HO cannot be true for
a population

Source: https://en.wikipedia.org/wiki/One-_and_two-tailed_tests



value that occurs at the peak (k=12) represent HO= 8=0.5 — typically, HO states that
there is no effect

as values for k move further away from the peak, it represents larger effect sizes (in
refuting HO)

when HO is true for the population, obtaining samples that exhibit large effects

becomes less likely, which is why the probabilities for k values taper off to the sides of
the curve, further from 6=0.5


https://statisticsbyjim.com/glossary/effect/

k=12 represents HO = 8=0.5
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Sampling distribution shows the probability associated with observed data k=7 highlighted in
red. Displays the probabilities of obtaining test statistic values when the null hypothesis is correct
(6=0.5).



Calculate p-value Two-Tailed

- To obtain a p-value:

- sum up all probabilities for observing values equal to or smaller than empirically
sampled test statistic k (=7)

- In other words: sum over all possible orders of coin-toss-outcome-values with
probabilities equal to or less than probability of observing k=7



Calculate in R Two-Tailed- handwritten
function

- ***{r, echo=T} i
# exact p-value for k=7 with N=24 and null-hypothesis theta = 0.5

k_obs <- 7
N <- 24
theta_ @ <- 0.5
#args: vecofquantiles, num oftrials, prob of success each trial
tibble( lh = dbinom(@:N, N, theta_@) ) %%

# Use filter() to choose rows/cases where conditions are true
# logical condition: lh smaller or equal to dbinom(k_obs, N, theta_©)

filter( lh <= dbinom(Ck_obs, N, theta_@) ) %%
#sum of all values of lh
pull(lh) %>% sum %% round(5)

(1] @.06391
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Sampling distribution shows the values that need to be summed over in red. p-value for the
observation of k=7 successes in N=24 coin flips. Displays the probabilities of obtaining test
statistic values when the null hypothesis is correct (6=0.5).



Calculate in R Two-Tailed- built-in
function

binom.test |
XxX=17, # observed successes
n = 24, # total nr. observations
p = 0.5 # null hypothesis

Exact binomial test

data: 7 and 24
number of successes = 7, number of trials = 24, p-value = 0.06391
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.1261521 0.5109478
sample estimates:
probability of success
0.2916667

P ER E R R EREREA



Calculate p-value One-Tail

Another possible research hypothesis for our experiment: Is the coin biased towards “heads”?
HO=6>05 H1=0=<05
Now we wish to calculate the p-value for data for this model!

- only seeks to measure effect into one direction from HO (and from the curve)
- what would count as the most extreme evidence against HO?

- We need to adjust what we consider



Calculate p-value One-Tail

- to obtain a p-value: What are the probabilities of observing values less than or equal
to test statistic k=77 Sum them!

- values on the right hand side from 0= 0.5 will not serve as evidence against HO
because all values there are 6>0.5

- the associated p-value must be calculated using a one-sided test, only considering
values on the left side of the curve



Calculate in R One-Tailed - handwritten
function

k_obs <= 7

N <- 24

theta_0 <- 0.5

# exact p-value for k=7 with N=24 and null-hypothesis theta > 0.5

dbinom(@:k_obs, N, theta_0) %>% sum %>% round(5)
## [1] 0.03196

- doubling the p value for one-tailed test results in the p-value for
two-tailed test for symmetrical sampling distributions!



assuming HO = 6>0.5
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Sampling distribution shows p-value for the observation of k=7 successes. Displays the
probabilities of obtaining test statistic values when null hypothesis is correct (6>0.5.).
Sum over all probabilities for observing values smaller than or equal to k only on the
left-hand side.



Calculate in R One-Tailed- built-in
function

binom. test|(
X =17, # observed successes
n = 24, # total nr. observations
p = 0.5, # null hypothesis
alternative = "less" # the alternative to compare against is theta < 0.5
)
@
## Exact binomial test
##

## data: 7 and 24

## number of successes = 7, number of trials = 24, p-value = 0.03196



Significance of p-values

Fisher: p-values as quantitative measures of strength of evidence against the null hypothesis:

if you get a result that is barely significant, there is chance that you falsely rejected HO!
Same with results that are barely non-significant, maybe we are falsely keeping HO!

we say a test result is significant if the p-value of the observed data is lower than a specified a
we fix the a-level of significance with common values a €{0.05,0.01,0.001}

commonly, a significant test results is interpreted as the signal to reject the null hypothesis, to
render it false

if your test statistic falls in either critical region, your sample data are sufficiently
incompatible with the null hypothesis and observing this value is sufficiently unlikely in light
of the null hypothesis so that you can reject it for the population!



- Significance of p-values
Sampling dist assuming HO ~ ssors s

e gampling distribution

-4 -3 -2 2§ 0 1 2 3 4

Source:
https://www.statisticshowto.datasciencecentral.com/what-is-an-alpha-level/



l-a
represents a
confidence
intervall =
certainty/prob
ability any
random
sampled k will
be amongst
these values

(1 -%‘)m percentile
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The two red tails are the alpha level, divided by two (i.e.
a/2).

Source: https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/one-tailed-test-or-two/



Errors of decision making

In hypothesis tests, two errors are possible:

- Type | error: Supporting the alternative hypothesis when the null hypothesis is true
(alpha error)

Example: type | error corresponds to FDA approving a novel drug while it actually has no
measured effect. HO= drug has no effect; H1= drug has desired effect

- Type ll error: Not supporting the alternative hypothesis when the alternative
hypothesis is true (beta error)

Example: type Il error corresponds to FDA rejecting a novel drug although it has the desired
effect. HO= drug has no effect; H1= drug has desired effect



Errors of decision making

Statistical power = probability that
an effect will be discovered when
an effect actually exists

defined as 1 - B where B is the
probability of making a second type
of error

If the statistical power is high, the
probability of committing a Type
error decreases

try to minimize both errors
by determining optimal

level of significance

Reject HO

Fail to Reject HO

higher for lower alpha

Reality: Type | error s
HO is True (probability = ) Probability = |-
Reality: Type |l error
HO is False Power (1-B) (probability = B)

Source: https://www.psychologyinaction.org/psychology-in-action-1/2015/03/11/an-illustrative-guide-to-statistical-power-alpha-beta-and-critical-values




Law of large numbers



The law of large numbers

Imagine you gather a lot of samples from random variables Xi,..., X, thatall have the same
expected value, i.e. E[X;] = p

—eg X; ~N(10.5,1), where E[X;] =10.5 oreg. X; ~4(0,100), where E[X;] = 50

You then want to estimate this expected value based on your samples (because you don’t know it yet)

. . . . —a 1 n
You think the arithmetic mean could be a good estimatorof u: 7 : = o Zizl X;

The law of large numbers assures that if you gather more and more samples and you compute their
arithmetic mean, this arithmetic mean will be (almost surely) the expected value E[XZ]



Law of large numbers

Arithmetic mean calculated for samples from
_ X; ~N(10.5,1) _ X; ~U(0,100)
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Arithmetic means and expected values of the distributions are the same for large n!



The central limit theorem



The Central limit theorem

Imagine you gather samples from random variables X7,..., X,, thatall have the
same expected value and the same (finite) variance, i.e. E[XZ] = /J,,Va’r[Xi] — g2 .

Then for each bunch of samples, e.g. for each 10 samples, you compute their arithmetic
mean.

You collect all the arithmetic means (forming a sampling distribution). If you got a sufficient
amount of means, then:

whatever the distribution of ghe random variables, the sampling distribution will be the
Normal distribution ,/V’(,u, %) if the overall sample size n is large enough.

If you normalize the sampling distribution, meaning you subtract the mean [/ from each
random variable and multiply by 4/7, it will be _/\/(O, 0'2)— distributed.



Central limit theorem

See for yourself!
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http://onlinestatbook.com/stat_sim/sampling_dist/index.html

The XZ- test for goodness of fit



The Xz - test for goodness of fit testing

Pearson’s x2-test for goodness of fit tests whether an observed vector of counts is well
explained by a given vector of predicted proportion.

“Goodness of fit” is a term used in model checking (a.k.a. model criticism, model validation,
...). In such a context, tests for goodness-of-fit investigate whether a model’s predictions are
compatible with the observed data.



The X2 - test for goodness of fit testing

We need:

- Categorical data (each data observation falls into one of several unordered categories)
- With k categories
- Anull hypothesis H)

- Vector of probabilities p = (p1,...,pr) that correspond to our H and gives the
probability with which a single data observation falls into the i-th category.



An example
Raw data: ¢(143, 1, 34, 100, 923, 23, 42,844, .., 59, 66, 71, 2), counting first digits leads to:

Categorical Data with 9 categories: 7 = (296,181,124, 83, 82, 64, 60, 58, 52) - N =1000

300~
)- |
)- I I
0- I I I I I I
1 2 3 4 5 6 7 8 9

First Digit
Vector of probabilities: ﬁ = <0301, 0176, 0125, 00969, 00792, 00669, 00580, 00512, 00458)
(nine probabilities, one for each category, summing up to 1.)



An example

Hj : the difference from the red bars to the data is not significant.
— x2 - test for goodness of fit allows us to test whether this data could plausibly have been

generated by (a model whose predictions are given by) the prediction vector.

0.3- e ——

Frequency
o
N

o
[

0.0- I I I I I -I_ I I
1 2 3 4 5 6 7 8 9
First Digit

p = (0.301,0.176,0.125, 0.0969, 0.0792, 0.0669, 0.0580, 0.0512, 0.0458)



Test statistic

2 _ ~~k (ni—np;)2
X = Z’i:1 np;

To get the value of the test statistic for the x?2 test, insert all the values:
- MNyistheith entry of vector 7 = (296,181,124, 83,82, 64, 60, 58, 52)
- Nine categories, so k=9
- DPiis the ith entry of vector p = (0.301,0.176,0.125, 0.0969, 0.0792, 0.0669, 0.0580, 0.0512, 0.0458)

- n=1000, all our data together

5  (296-301) (52—45.8)°
X = s Tt ma = 4.263105




InR

Manually: With in-build test:

S}

h <- dscount chisq.test(x = dScount, p = p)

# proprortion predicted

p <- ¢(0.301, 0.176, 0.125, 0.0969, 0.0792, 0.0669, 0.0580, 0.0512, 0.0458)
# expected number in each cell

e <- sum(n)*p Chi-squared test for given probabilities
# th-squared for observedAdaEa fatal dEEoE

chi2_observed <- sum((n-e)"2 * 1/e) X-squared = 4.2631, df = 8, p-value = 0.8326
chi2_observed

p_value <- 1 - pchisq(chi2_observed, df = 8)
p_value

[1] 0.8326392



Result & Interpretation

The common interpretation of our calculations would be to say that the test yielded no
significant result, at least at the significance level of a=0.05.

In a research paper we might report this results roughly as follows:

“The observed counts deviated not significantly from what is expected if each
category (here: first digits) followed the specified probabilities (x2-test, with ¢ = 0.05
X2=4.2631, df=8 and p=0.8326). We therefore conclude that there is no evidence to
reject the hypothesis that our data conforms to the specifies probabilities.”



Homework hints



Homework Hints

Exercise 1: Addressing hypotheses
about coin flips with hypothesis testing

Similar procedure for all three cases: Think about that a point null hypothesis
(e.g. 8 = 0.5) results in a two-sided test, and an interval hypothesis (e.g. 8 < 0.5) in a
one-sided test



Exercise 2: Pearson’s y2-test of
goodness of fit

- Think what the test does, what are your data, your expected probabilities?
- Check how to use the R function:

chisq.test {stats} R Documentatio

Pearson's Chi-squared Test for Count Data

Description

chisq.test performs chi-squared contingency table tests and goodness-of-fit tests.
Usage

chisq.test(x, y = NULL, correct = TRUE,

p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

Arguments

X a numeric vector or matrix. x and y can also both be factors.

y a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of the same length.

correct a logical indicating whether to apply continuity correction when computing the test statistic for 2 by 2 tables: one

half is subtracted from all /O - £/ differences; however, the correction will not be bigger than the differences
themselves. No correction is done if simulate.p.value = TRUE.

p a vector of probabilities of the same length of x. An error is given if any entry of p is negative.



Exercise 3: Some claims about
frequentist testing

Frequentist statistics is all about repetitions. It never puts probabilities into parameter
values.
Check the lecture slides/ tutorial slides



Thank you for listening.

Questions?



https://media.giphy.com/media/9ADoZQgs0tyww/giphy.gif

