MODEL COMPARISON



RECAP & QUTLOOK

PARAMETER ESTIMATION AN

» given model M and data D: what are good values of M A
parameters?

000 R

HYPOTHESIS TESTING

» given model M: is a specific null assumption about

some parameter’s value compatible with data D?

MODEL COMPARISON

» how much better an explanation of data D is one
model, relative to another model?




WHAT MAKES A MODEL "G00D"?

GOOD EXPLANATION
» model M is a good model of data D to the extent that it explains D well

» a good explanation of D is a view of the world that makes D less puzzling
» the higher P(D | M), the better M explains D

SIMPLICITY :: ECONOMY :: PARSIMONY

» model M is a good model of data D to the extent that it is simple

» we want our explanations to be austere, with few postulates, no magic
ingredients and a lean mechanism / functional form

» the fewer (powerful) parameters M has, the better



LEARNING GOALS

s
» understand the differences between estimation, testing \ NP
and model comparison N
» understand the idea behind and become able to apply e
the covered methods: t -
» Akaike information criterion T

» likelihood-ratio test
» Bayes factor

» become familiar with pro's and con's of each of these
methods







FORGETTING DATA

» 100 binary measurements (correct / incorrect recall)
at different times after memorization

1.00-

# time after memorization (in seconds)
t =¢(1, 3, 6, 9, 12, 18)

0.75- # proportion (out of 100) of correct recall

y = ¢(.94, .77, .40, .26, .24, .16)

# number of observed correct recalls (out of 100)

0.50- obs =y x 100

proportion of correct recall

0.00-
5 10 15
time (in seconds)



RECALL MODELS

EXPONENTIAL MODEL POWER MODEL
P(D = (k,N) | {a, b)) = Binom(k, N, a exp(—bt)) P(D = (k,N) | {c,d)) = Binom(k, N, ¢ t=¢)
with a, b > 0 with ¢,d > 0

Function ab=1 — ab=2 — a=1b=0.1 Function cd=1 — cd=2 — c=2. d=1
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RECALL MODELS

EXPONENTIAL MODEL POWER MODEL

P(D = (k,N) | (a, b)) = Binom(k, N, aexp(—bt)) P(D = {(k,N) | {c,d)) = Binom(k, N, c =9)
with a,b > 0 : 0

Function — =01 — 2 — | - \Afich Of these  etor — ot — o — e
two models is a
better model for

0.75-

recall prob.
o
&

the observed

k o data?

0.00-

0.0-

time t time t






AKAIKE INFORMATION CRITERION

» M. is a (frequentist) model with likelihood function P(D | 6,, M)

» k free parameters in parameter vector 0,

A\

, 0, = arg meax P(D,,. | 6;,,M.) is the MLE for observed data D,

l

» the AIC-score (where lower is better) is defined as:

AIC(M;, Dyy,) = 2k — 210g P(Dyy | 0, M)

l

[penalty for complexity]

[how surprising is the data for the best parameter of the model?]



COMPUTING AIC-SCORES :: STEP 1 :: GETTING MLES

=

generic neg-log-LH function (covers both models)

nLL_generic <- function(par, model_name) {

h

wl <— par[1]
w2 <— par[2]
# make sure paramters are in acceptable range
if (wl <0 | w2 <0 | wl > 20 | w2 > 20) {
return(NA)
}
# calculate predicted recall rates for given parameters
if (model_name == "exponential) {
theta <— wlkxexp(-w2xt) # exponential model
} else {
theta <— wlxt~(-w2) # power model
¥
# avold edge cases of infinite log-likelihood
theta[theta <= 0.0] <- 1.0e-4
thetal[theta >= 1.0] <- 1-1.0e-4
# return negative log-likelihood of data

- sum(dbinom(x = obs, prob = theta, size = 100, log = T))

# negative log likelihood of exponential model

nLL_exp <- function(par) {nLL_generic(par, "exponential")}

# negative log Llikelihood of power model

nLL_pow <- function(par) {nLL_generic(par, "power")}

# getting the best fitting values

bestExpo <- optim(nLL_exp, par

bestPow <- optim(nLL_pow, par

MLEstimates = data.frame(model

knitr::kable(MLEstimates)

model
exponential
exponential
power

power

parameter

value

c(1,0.5))
c(0.5,0.2))

rep(c("exponential”, "power"), each = 2),

C("a", "b", ucu' "d"),

c(bestExpo$par, bestPowSpar))

parameter

d

b

value

1.0701722

0.1308151

0.9531330

0.4979154



INSPECTING EACH MODEL'S BEST PREDICTION

Function exponential — power

It's hard to say from
visual inspection which
model is better.

0.75-

recall rate
()
(@)
(-

0.25- . . —

time



COMPUTING AIC-SCORES :: STEP 2 :: CALCULATE AIC FROM MLE

get AIC <— function(optim_fit) {
2 x length(optim_fit$par) + 2 *x optim_fit$value AIC(MZ’D
}
AIC _scores <— tibble(
AIC _exponential = get_AIC(bestExpo),
AIC power = get AIC(bestPow)
)

AIC scores

) =2k —2log P(D,,,. | 6:, M)

obs

e Exponential model has lower
##  AIC_exponential AIC_power AIC SCOre, SO it comes up as

H#H# <db1> <db 1>

w1 w3 s >— "better” under this approach.



AKAIKE WEIGHTS

WarcM,, D) = —— B2 CAIC e )
Z,-zl exp(—0.5* Apic(M;, D))

J

delta_AIC_power <— AIC_scores$AIC_power — AIC_scores$AIC_exponential

delta_AIC_exponential <- 0
Akaike weight exponential <- exp(-0.5 *x delta AIC exponential) /
(exp(-0.5 x% delta AIC exponential) + exp(-0.5 * delta AIC power))

Akaike weight_expaonential

## [1] 0.9996841

PM; | D) = wpic(M;, D)

Based on the quantitative
(approximate) interpretation of
Akaike weights, we would conclude

that the evidence in favor of the
exponential model is very strong.






NESTED [rreauentis MODELS

» LR-test first and foremost applies to the comparison of nested models
» (simpler) model M. is nested under (more complex) model MJ it M. is

like M, but fixes some of M;'s free parameters to specific values
» M. is the nested mode|

» M; is the nesting model or encompassing model

NESTING EXPONENTIAL MODEL P(D = {k,N) | (a, b)) = Binom(k, N, a exp(—bt))
with a,b > 0
NESTED EXPONENTIAL MODEL P(D = (k,N) | b) = Binom(k, N,1.1 exp(—bt))

with b > 0



LR-TEST FOR NESTED MODELS

» let M, be nested under M,

» let d be the number of parameters free in M, but fixed in M,
» the test statistic is the likelihood ratio:

PM()(DObS ‘ éo)

PMl(DQbS | 91)

» if M, is the true model, the sampling distribution is closely

approximated by a y*-distribution with d degrees of freedom
(for large data)



LR-TEST EXAMPLE

GET MLE FOR NESTED MODEL

nLL_expo_nested <- function(b) {
# calculate predicted recall rates for given paramete
theta <- 1.1xexp(-bxt) # one-param exponential model
# avold edge cases of infinite log-likelihood
theta[theta <= 0.0] <- 1.0e-4
theta[theta >= 1.0] <- 1-1.0e-4
# return negative log-Llikelihood of data

- sum(dbinom(x = obs, prob = theta, size = 100, log =

bestExpo_nested <- optim(
nLL_expo_nested,
par = 0.5,
method = "Brent",
lower = @,

upper = 20

TEST STATISTIC FOR OBSERVED DATA

LR_observed <- 2 *x bestExpo_nested$value - 2 x bestExpo$value

rs LR_observed

## [1] 1.098429

P-VALUE FOR OBSERVED DATA

T))

p_value LR test <- 1 - pchisq(LR observed, 1)
p_value_LR_test

## [1] 0.2946111

No strong evidence in the data against the assumption that the
simpler nested model is correct. Therefore, preferring simplicity,
the decision is usually to stick with the simpler model.






BAYES FACTOR

» Bayesian models (with priors):
» M, has prior P(0, | M) and likelihood P(D | 6,, M,)
» M, has prior P(6, | M,) and likelihood P(D | 6,, M,)

» Bayes factor is the factor by which the prior odds need to be adjusted
by rational belief update after observing D to arrive at posterior odds

P(M1|D)=P(D|M1) P(M,)
PM, | D) P |M,) P(M,)

posterior odds Bayes factor  prior odds



EXPANDING BAYES FACTOR

P(D|M)) [P@;| M) P(D|6,M,)de
P(D | My  [P©;| My P(D | 6, M) do
» Bayes factors look at ex ante (a priori) predictions

» integration over priors = implicit (severe) punishment for model complexity
» calculating Bayes factors is computationally hard for sophisticated models



NOTATION AND INTERPRETATION

P(D | M)
P(D | M)

read: “BF in favor of

BFlz —

model 1 over model 2"

6-10

10 - 30

30 - 100

100 +

interpretation

irrelevant data
hardly worth ink or breath
anecdotal
now we’re talking: substantial
strong
very strong

decisive (bye, bye M,!)



BAYESIAN FORGETTING MODELS

EXPONENTIAL MODEL

P(D = (k,N) | {a,b),
P(a
P(b

Mexy,) = Binom(k, N, a exp(—bt))
M x,) = Uniform(a, 0, 1.5)
Mexp,) = Uniform(b, 0, 1.5)

POWER MODEL

P(D = (k,N) | (¢,d), Mpoy) = Binom(k, N, ¢ t9)

P(d
P(c

M) = Uniform(c, 0, 1.5)
M,ow) = Uniform(d, 0, 1.5)

# prior exponential model
priorExp = function(a, b){
dunif(a, 2, 1.5) * dunif(b, 9, 1.5)
¥
# likelihood function exponential model
LhExp = function(a, b){
theta = axexp(-bxt)
theta[theta <= 0.0] = 1.0e-5
thetal[theta >= 1.0] = 1-1.0e-5
prod(dbinom(x = obs, prob = theta, size = 100))

# prior power model
priorPow = function(c, d){
dunif(c, 2, 1.5) x dunif(d, 9, 1.5)
s
# likelihood function power model
LhPow = function(c, d){
theta = cxt”(-d)
thetal[theta <= 0.0] = 1.0e-5
theta[theta >= 1.0] = 1-1.0e-5
prod(dbinom(x = obs, prob = theta, size = 100))



GRID APPROXIMATION

# make sure the functions accept vector 1nput
LhExp = Vectorize(lhExp)

LhPow = Vectorize(lhPow)

# define the step size of the grid

stepsize = 0.01

# calculate the "evidence" aka marginal likelihood

evidence = expand.grid(x = seq(0.005, 1.495, by = stepsize),
y = seq(2.005, 1.495, by = stepsize)) %>%

mutate( LhExp

1
LhExp(x,y), priExp = 1 / length(x), # uniform priors!
1

LhPow = 1hPow(x,y), priPow = 1 / length(x))

paste@("BF in favor of exponential model: ",

with(evidence, sum(priExpxlhExp)/ sum(priPowkxlhPow)) %>% round(2))

## [1] "BF in favor of exponential model: 1221.39"



NAIVE MONTE CARLO SAMPLING

n
P(D,M;) = [ P(D|0,M) P(O| M) a6~ — 3" P(D|0,M)
0,~P(0| M)
nSamples = 1000000
a = runif(nSamples, 0, 1.5) 1400 -
b = runif(nSamples, 0, 1.5)
LhExpVec = LlThExp(a,b) 1300-
lhPowVec = 1hPow(a,b) o

paste@("BF in favor of exponential model: ",

1200 -

signif (sum(lhExpVec) / sum(lhPowVec)),6)

1100 -

## [1] "BF in favor of exponential model: 1250.366"
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