INTRODUCTION TO DATA ANALYSIS

MODEL COMPARISON

RECAP & OUTLOOK

PARAMETER ESTIMATION

given model M and data D: what are good values of parameters?

HYPOTHESIS TESTING

given model M: is a specific null assumption about some parameter's value compatible with data D?

MODEL COMPARISON

how much better an explanation of data D is one model, relative to another model?

WHAT MAKES A MODEL 'GOOD'?

GOOD EXPLANATION

- model M is a good model of data D to the extent that it explains D well
- a good explanation of D is a view of the world that makes D less puzzling
 - the higher $P(D \mid M)$, the better M explains D

SIMPLICITY :: ECONOMY :: PARSIMONY

- model M is a good model of data D to the extent that it is simple
- we want our explanations to be austere, with few postulates, no magic ingredients and a lean mechanism / functional form
 - the fewer (powerful) parameters M has, the better

LEARNING GOALS

- understand the differences between estimation, testing and model comparison
- understand the idea behind and become able to apply the covered methods:
 - Akaike information criterion
 - likelihood-ratio test
 - Bayes factor
- become familiar with pro's and con's of each of these methods

Case study time-course of recall rates

FORGETTING DATA

100 binary measurements (correct / incorrect recall) at different times after memorization


```
# time after memorization (in seconds)
t = c(1, 3, 6, 9, 12, 18)
# proportion (out of 100) of correct recall
y = c(.94, .77, .40, .26, .24, .16)
# number of observed correct recalls (out of 100)
obs = y * 100
```

RECALL MODELS

EXPONENTIAL MODEL

with a, b > 0

POWER MODEL $P(D = \langle k, N \rangle \mid \langle a, b \rangle) = \text{Binom}(k, N, a \exp(-bt)) \quad P(D = \langle k, N \rangle \mid \langle c, d \rangle) = \text{Binom}(k, N, c t^{-d})$ with c, d > 0

i'o time t 15 5 20

Function — c,d=1 — c,d=2 — c=2, d=1

RECALL MODELS

Akaike information criterion

AIKE INFORMATION CRITERION

- M_i is a (frequentist) model with likelihood function $P(D \mid \theta_i, M_i)$ • k free parameters in parameter vector θ_i
- $\hat{\theta}_i = \arg \max_{\theta_i} P(D_{obs} \mid \theta_i, M_i)$ is the MLE for observed data D_{obs}
- the AIC-score (where lower is better) is defined as:

[penalty for complexity]

[how surprising is the data for the best parameter of the model?]

$AIC(M_i, D_{obs}) = 2k - 2\log P(D_{obs} \mid \hat{\theta}_i, M_i)$

COMPUTING AIC-SCORES :: STEP 1 :: GETTING MLES

```
# generic neg-log-LH function (covers both models)
nLL_generic <- function(par, model_name) {</pre>
  w1 <- par[1]
  w2 \ll par[2]
  # make sure paramters are in acceptable range
 if (w1 < 0 | w2 < 0 | w1 > 20 | w2 > 20) {
    return(NA)
  # calculate predicted recall rates for given parameters
 if (model_name == "exponential") {
    theta <- w1*exp(-w2*t) # exponential model</pre>
  } else {
    theta <- w1*t^(-w2) # power model
  # avoid edge cases of infinite log-likelihood
  theta[theta <= 0.0] <- 1.0e-4
  theta[theta >= 1.0] <- 1-1.0e-4
  # return negative log-likelihood of data
  - sum(dbinom(x = obs, prob = theta, size = 100, log = T))
# negative log likelihood of exponential model
nLL_exp <- function(par) {nLL_generic(par, "exponential")}</pre>
# negative log likelihood of power model
nLL_pow <- function(par) {nLL_generic(par, "power")}</pre>
```

knitr::kable(MLEstimates)

model	parameter	va
exponential	а	1.07017
exponential	b	0.1308
power	С	0.95313
power	d	0.4979

INSPECTING EACH MODEL'S BEST PREDICTION

¹⁰ time

— exponential — power

It's hard to say from visual inspection which model is better.

COMPUTING AIC-SCORES :: STEP 2 :: CALCULATE AIC FROM MLE

```
get_AIC <- function(optim_fit) {</pre>
  2 * length(optim_fit$par) + 2 * optim_fit$value
}
AIC_scores <- tibble(
  AIC_exponential = get_AIC(bestExpo),
  AIC_power = get_AIC(bestPow)
AIC_scores
## # A tibble: 1 x 2
```

##		AIC_exponential	AIC_	_power	
##		<dbl></dbl>		<dbl></dbl>	
##	1	41.3		57.5	

$AIC(M_i, D_{obs}) = 2k - 2\log P(D_{obs} \mid \hat{\theta}_i, M_i)$

Exponential model has lower AIC score, so it comes up as "better" under this approach.

AKAIKE WEIGHTS

$$w_{\text{AIC}}(M_i, D) = \frac{\exp(-0.5 * \Delta_{\text{AIC}}(M_i, D))}{\sum_{j=1}^k \exp(-0.5 * \Delta_{\text{AIC}}(M_j))}$$
$$\Delta_{\text{AIC}}(M_i, D) = \text{AIC}(M_i, D) - \min_j \text{AIC}(M_j)$$

delta_AIC_power <- AIC_scores\$AIC_power - AIC_scores\$AIC_exponential</pre> delta_AIC_exponential <- 0</pre> Akaike_weight_exponential <- exp(-0.5 * delta_AIC_exponential) / (exp(-0.5 * delta_AIC_exponential) + exp(-0.5 * delta_AIC_power)) Akaike_weight_exponential

[1] 0.9996841

(D) $1_i, D,$

$P(M_i \mid D) \approx W_{AIC}(M_i, D)$

Based on the quantitative (approximate) interpretation of Akaike weights, we would conclude that the evidence in favor of the exponential model is very strong.

Likelihood Ratio Test

NESTED [FREQUENTIST] MODELS

- LR-test first and foremost applies to the comparison of nested models
- (simpler) model M_i is nested under (more complex) model M_i if M_i is like M_i , but fixes some of M_i 's free parameters to specific values
 - M_i is the nested model
 - M_i is the nesting model or encompassing model

NESTING EXPONENTIAL MODEL

NESTED EXPONENTIAL MODEL

 $P(D = \langle k, N \rangle \mid \langle a, b \rangle) = \text{Binom}(k, N, a \exp(-bt))$ with a, b > 0

 $P(D = \langle k, N \rangle \mid b) = \text{Binom}(k, N, 1.1 \exp(-bt))$ with b > 0

LR-TEST FOR NESTED MODELS

- let M_0 be nested under M_1
- let d be the number of parameters free in M_1 but fixed in M_0
- the test statistic is the likelihood ratio:

 $LR(M_1, M_0) = -2\log\left(\frac{P_{M_0}(D_{obs} \mid \hat{\theta}_0)}{P_{M_1}(D_{obs} \mid \hat{\theta}_1)}\right)$

• if M_0 is the true model, the sampling distribution is closely approximated by a χ^2 -distribution with d degrees of freedom (for large data)

LR-TEST EXAMPLE

GET MLE FOR NESTED MODEL

```
nLL_expo_nested <- function(b) {</pre>
 # calculate predicted recall rates for given parameters
 theta <- 1.1*exp(-b*t) # one-param exponential model
 # avoid edge cases of infinite log-likelihood
 theta[theta <= 0.0] <- 1.0e-4
 theta[theta >= 1.0] <- 1-1.0e-4
 # return negative log-likelihood of data
 - sum(dbinom(x = obs, prob = theta, size = 100, log = T))
```

```
bestExpo_nested <- optim(</pre>
 nLL_expo_nested,
 par = 0.5,
 method = "Brent",
  lower = 0,
 upper = 20
```

TEST STATISTIC FOR OBSERVED DATA

LR_observed <- 2 * bestExpo_nested\$value - 2 * bestExpo\$value</pre> LR_observed

[1] 1.098429

P-VALUE FOR OBSERVED DATA

```
p_value_LR_test <- 1 - pchisq(LR_observed, 1)</pre>
p_value_LR_test
```

[1] 0.2946111

No strong evidence in the data against the assumption that the simpler nested model is correct. Therefore, preferring simplicity, the decision is usually to stick with the simpler model.

BAYES FACTOR

Bayesian models (with priors):

- M_1 has prior $P(\theta_1 \mid M_1)$ and likelihood $P(D \mid \theta_1, M_1)$
- M_2 has prior $P(\theta_2 \mid M_2)$ and likelihood $P(D \mid \theta_2, M_2)$
- Bayes factor is the factor by which the prior odds need to be adjusted by rational belief update after observing D to arrive at posterior odds

$$\frac{P(M_1 \mid D)}{P(M_2 \mid D)} = \frac{F}{F}$$

posterior odds

 $P(D \mid M_1) \quad P(M_1)$ $P(D \mid M_2) \quad P(M_2)$

Bayes factor prior odds

EXPANDING BAYES FACTOR

$P(D \mid M_1) = \int P(\theta_i \mid M_i) P(D \mid \theta_i, M_i) d\theta_i$ $P(D \mid M_2) \qquad \left[P(\theta_i \mid M_i) P(D \mid \theta_i, M_i) \, \mathrm{d}\theta_i \right]$

- Bayes factors look at ex ante (a priori) predictions

• integration over priors \rightarrow implicit (severe) punishment for model complexity calculating Bayes factors is computationally hard for sophisticated models

NOTATION AND INTERPRETATION

$ext{BF}_{12} = rac{P(D \mid M_1)}{P(D \mid M_2)}$

read: "BF in favor of model 1 over model 2"

interpretation	BF_{12}
irrelevant data	1
hardly worth ink or breat	1 - 3
anecdotal	3 - 6
now we're talking: substan	6 - 10
strong	10 - 30
very strong	30 - 100
decisive (bye, bye M_2 !)	100 +

BAYESIAN FORGETTING MODELS

EXPONENTIAL MODEL

$$egin{aligned} P(D = \langle k, N
angle \mid \langle a, b
angle, M_{ ext{exp}}) &= ext{Binom}(k, N, a \exp(-bt)) \ P(a \mid M_{ ext{exp}}) &= ext{Uniform}(a, 0, 1.5) \ P(b \mid M_{ ext{exp}}) &= ext{Uniform}(b, 0, 1.5) \end{aligned}$$

POWER MODEL

```
# prior exponential model
priorExp = function(a, b){
  dunif(a, 0, 1.5) * dunif(b, 0, 1.5)
}
# likelihood function exponential model
lhExp = function(a, b){
  theta = a * exp(-b*t)
  theta[theta <= 0.0] = 1.0e-5
  theta[theta >= 1.0] = 1-1.0e-5
  prod(dbinom(x = obs, prob = theta, size = 100))
# prior power model
priorPow = function(c, d){
  dunif(c, 0, 1.5) * dunif(d, 0, 1.5)
# likelihood function power model
lhPow = function(c, d){
  theta = c*t^{-d}
  theta[theta <= 0.0] = 1.0e-5
  theta[theta >= 1.0] = 1-1.0e-5
  prod(dbinom(x = obs, prob = theta, size = 100))
```


GRID APPROXIMATION

```
# make sure the functions accept vector input
lhExp = Vectorize(lhExp)
lhPow = Vectorize(lhPow)
# define the step size of the grid
stepsize = 0.01
# calculate the "evidence" aka marginal likelihood
evidence = expand.grid(x = seq(0.005, 1.495, by = stepsize),
                       y = seq(0.005, 1.495, by = stepsize)) %>%
  mutate(lhExp = lhExp(x,y), priExp = 1 / length(x), # uniform priors!
         lhPow = lhPow(x,y), priPow = 1 / length(x))
```

```
paste0("BF in favor of exponential model: ",
            with(evidence, sum(priExp*lhExp)/ sum(priPow*lhPow)) %>% round(2))
```

[1] "BF in favor of exponential model: 1221.39"

NAIVE MONTE CARLO SAMPLING

$$P(D,M_i) = \int P(D \mid heta,M_i) \ P(heta \mid M_i) \ \mathrm{d} heta pprox$$

[1] "BF in favor of exponential model: 1250.366"

