
MODEL COMPARISON
INTRODUCTION TO DATA ANALYSIS



RECAP & OUTLOOK

▸ given model  and data : what are good values of 
parameters?
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PARAMETER ESTIMATION

HYPOTHESIS TESTING

▸ given model : is a specific null assumption about 
some parameter’s value compatible with data ?

M
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MODEL COMPARISON

▸ how much better an explanation of data  is one 
model, relative to another model?

D



WHAT MAKES A MODEL ‘GOOD’?

▸ model  is a good model of data  to the extent that it explains  well 
▸ a good explanation of  is a view of the world that makes  less puzzling 
▸ the higher , the better  explains 
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GOOD EXPLANATION

SIMPLICITY :: ECONOMY :: PARSIMONY

▸ model  is a good model of data  to the extent that it is simple 
▸ we want our explanations to be austere, with few postulates, no magic 

ingredients and a lean mechanism / functional form 
▸ the fewer (powerful) parameters  has, the better
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LEARNING GOALS

▸ understand the differences between estimation, testing 
and model comparison 

▸ understand the idea behind and become able to apply 
the covered methods: 
▸ Akaike information criterion 
▸ likelihood-ratio test 
▸ Bayes factor 

▸ become familiar with pro's and con's of each of these 
methods



case study
time-course of recall rates
 



FORGETTING DATA

▸ 100 binary measurements (correct / incorrect recall) 
at different times after memorization



RECALL MODELS
EXPONENTIAL MODEL
P(D = ⟨k, N⟩ ∣ ⟨a, b⟩) = Binom(k, N, a exp(−bt))
with a, b > 0

POWER MODEL
P(D = ⟨k, N⟩ ∣ ⟨c, d⟩) = Binom(k, N, c t−d)
with c, d > 0



RECALL MODELS
EXPONENTIAL MODEL
P(D = ⟨k, N⟩ ∣ ⟨a, b⟩) = Binom(k, N, a exp(−bt))
with a, b > 0

POWER MODEL
P(D = ⟨k, N⟩ ∣ ⟨c, d⟩) = Binom(k, N, c t−d)
with c, d > 0

Which of these 
two models is a 
better model for 
the observed 
data?



Akaike 
information 
criterion
 



AKAIKE INFORMATION CRITERION

AIC(Mi, Dobs) = 2k − 2 log P(Dobs ∣ ̂θi, Mi)

▸  is a (frequentist) model with likelihood function  
▸  free parameters in parameter vector  

▸  is the MLE for observed data  

▸ the AIC-score (where lower is better) is defined as:

Mi P(D ∣ θi, Mi)
k θi

̂θi = arg max
θi

P(Dobs ∣ θi, Mi) Dobs

[penalty for complexity]

[how surprising is the data for the best parameter of the model?]



COMPUTING AIC-SCORES :: STEP 1 :: GETTING MLES



INSPECTING EACH MODEL’S BEST PREDICTION

It’s hard to say from 
visual inspection which 
model is better.



COMPUTING AIC-SCORES :: STEP 2 :: CALCULATE AIC FROM MLE

AIC(Mi, Dobs) = 2k − 2 log P(Dobs ∣ ̂θi, Mi)

Exponential model has lower 
AIC score, so it comes up as 
“better” under this approach.



AKAIKE WEIGHTS

wAIC(Mi, D) =
exp(−0.5 * ΔAIC(Mi, D))

∑k
j=1 exp(−0.5 * ΔAIC(Mj, D))

ΔAIC(Mi, D) = AIC(Mi, D) − min
j

AIC(Mj, D)
P(Mi ∣ D) ≈ wAIC(Mi, D)

Based on the quantitative 
(approximate) interpretation of 
Akaike weights, we would conclude 
that the evidence in favor of the 
exponential model is very strong.



Likelihood 
Ratio Test
 



NESTED [FREQUENTIST] MODELS 

▸ LR-test first and foremost applies to the comparison of nested models 
▸ (simpler) model  is nested under (more complex) model  if  is 

like , but fixes some of ’s free parameters to specific values 
▸  is the nested model 
▸  is the nesting model or encompassing model

Mi Mj Mi
Mj Mj

Mi
Mj

NESTING EXPONENTIAL MODEL P(D = ⟨k, N⟩ ∣ ⟨a, b⟩) = Binom(k, N, a exp(−bt))
with a, b > 0

NESTED EXPONENTIAL MODEL P(D = ⟨k, N⟩ ∣ b) = Binom(k, N,1.1 exp(−bt))
with b > 0



LR-TEST FOR NESTED MODELS

▸ let  be nested under  
▸ let  be the number of parameters free in  but fixed in  
▸ the test statistic is the likelihood ratio: 

 

▸ if  is the true model, the sampling distribution is closely 
approximated by a -distribution with  degrees of freedom 
(for large data)

M0 M1
d M1 M0

LR(M1, M0) = − 2 log
PM0

(Dobs ∣ ̂θ0)

PM1
(Dobs ∣ ̂θ1)

M0
χ2 d



LR-TEST EXAMPLE

GET MLE FOR NESTED MODEL TEST STATISTIC FOR OBSERVED DATA

P-VALUE FOR OBSERVED DATA

No strong evidence in the data against the assumption that the 
simpler nested model is correct. Therefore, preferring simplicity, 
the decision is usually to stick with the simpler model.



Bayes 
Factors
 



BAYES FACTOR

▸ Bayesian models (with priors): 
▸  has prior  and likelihood  
▸  has prior  and likelihood  

▸ Bayes factor is the factor by which the prior odds need to be adjusted 
by rational belief update after observing  to arrive at posterior odds

M1 P(θ1 ∣ M1) P(D ∣ θ1, M1)
M2 P(θ2 ∣ M2) P(D ∣ θ2, M2)

D

P(M1 ∣ D)
P(M2 ∣ D)

posterior odds

=
P(D ∣ M1)
P(D ∣ M2)

Bayes factor

P(M1)
P(M2)

prior odds



EXPANDING BAYES FACTOR

P(D ∣ M1)
P(D ∣ M2)

=
∫ P(θi ∣ Mi) P(D ∣ θi, Mi) dθi

∫ P(θj ∣ Mj) P(D ∣ θj, Mj) dθj

▸ Bayes factors look at ex ante (a priori) predictions 
▸ integration over priors → implicit (severe) punishment for model complexity 
▸ calculating Bayes factors is computationally hard for sophisticated models



NOTATION AND INTERPRETATION

read: “BF in favor of 
model 1 over model 2”



BAYESIAN FORGETTING MODELS

EXPONENTIAL MODEL

POWER MODEL



GRID APPROXIMATION



NAIVE MONTE CARLO SAMPLING


