Statistical inference and things that can go wrong

Timo B. Roettger

@TimoRoettger

election polls

human cognition

scientific publications

Is there a relationship between **autism** and **vaccination**?

Is there a relationship between **autism** and **vaccination**?

measure some stuff...

Is there a relationship between **autism** and **vaccination**?

measure some stuff...

Evaluate that measured stuff using **statistical inference**

Is there a relationship between **autism** and **vaccination**?

measure some stuff...

Evaluate that measured stuff using **statistical inference**

Publish findings in a scientific journal

Is there a relationship between **autism** and **vaccination**?

measure some stuff...

Evaluate that measured stuff using **statistical inference**

Publish findings in a scientific journal

Donald J. Trump

Yuge scientific finding: Vacination caused autism in billions of children.

Statistical inference and NHST

Statistical inference and NHST

Statistical inference

Statistical inference

Estimates

population

Inference

Parameters

Statistical inference

Estimates

population

Inference

Parameters

0. Set up the Alternative Hypothesis (H_a). **1. Set up the Null-Hypothesis (H₀).**

- 0. Set up the Alternative Hypothesis (H_a).
- **1. Set up the Null-Hypothesis (H₀).**
- **2.** Calculate the probability of the results under H₀ (*p* value). 3. Reject H₀ when p < 0.05, else do not reject.

H_a: Drunken people diverge more from a straight line than sober people.

- H_a: drunk > sober
- H₀: Drunken people diverge as much from a straight line as sober people.
- H₀: drunk = sober

the larger t, the smaller p

standard error (SE)

difference between groups

"noise"

sample

* this is a simplified version of the formula to make a conceptual point, please do not use this to actually calculate *t*-values as the actual formulas are a bit more complicated

difference between groups

the larger *t*, the smaller *p*

standard error (SE)

"noise"

sample size

"noise"

sample size

"noise"

sample

H₀: drunk = sober

H₀: drunk = sober

26	21
12	3
8	4
17	12
3	2
1	9

. . .

. . .

H_0 : drunk = sober

You are DRUNK.

- 0. Set up the Alternative Hypothesis (H_1).
- **1. Set up the Null-Hypothesis (H₀).**
- **2.** Calculate the probability of the results under H₀ (*p* value). 3. Reject H₀ when p < 0.05, else do not reject.

You are **DRUNK**.

False Positive Type-lerror

You are NOT drunk.

False Negative Type-II error

in sample

Things that can go wrong

Type-lerrorErroneousType-llerrorErroneous

Erroneously rejecting the null

Erroneously failing to reject the null
Things that can go wrong

Type-lerrorErroneousType-llerrorErroneous

Erroneously rejecting the null

Erroneously failing to reject the null

Things that can go wrong **Type-l error** Erroneously **rejecting** the null **Type-II error** Erroneously failing to reject the null **Type-M error** Overconfident estimation of the **magnitude** of the effect **Type-S error** Overconfident estimation of the sign of the effect

not significant p > 0.05

Not published and never seen again

The probability of the null hypothesis

The probability of the null hypothesis

The probability of the alternative hypothesis

If > 0.05, there is no difference between groups

The probability of the null hypothesis

The probability of the alternative hypothesis

If > 0.05, there is no difference between groups

If < 0.05, the effect is important

The probability of the null hypothesis

The probability of the alternative hypothesis

If > 0.05, there is no difference between groups

If < 0.05, the effect is important

If < 0.05, we can conclusively answer a scientific question

The probability of the null hypothesis

The probability of the alternative hypothesis

If > 0.05, there is no difference between groups

If < 0.05, the effect is important

If < 0.05, we can conclusively answer a scientific question

The probability of the null hypothesis

The probability of the alternative hypothesis

If > 0.05, there is no difference between groups

If < 0.05, the effect is important

If < 0.05, we can conclusively answer a scientific question

Unlucky sampling

https://troettger.shinyapps.io/sample_away/

What are your questions?

Statistical inference and NHST

Why do we have to be careful interpreting p-values?

We make statistical errors

Why do we have to be careful interpreting p-values?

We make statistical errors

Our studies have not enough power

50 Small means 0 samples size -50 -100leads to increased Type M & Type S errors

100

Vasishth et al. (2018: 152)

50 Small means samples size -50 -100leads to increased Type M & Type S errors

100

Effect 15 ms, SD 100, n=350, power=0.80

Vasishth et al. (2018: 152)

50 Small means samples size -50 -10010 leads to increased Effect 15 ms, SD 100, n=350, power=0.80 Type M & 100 50 Type S errors means -50

-100 -

100

Vasishth et al. (2018: 152)

Statistical power is often low

Button et al. (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365.

Median power =

Why do we have to be careful interpreting p-values?

We make statistical errors

Our studies have not enough power

We explore researcher degrees of freedom

Multiple testing H₁: People from Berlin are more fashionable than people from Osnabrück.

H₀: Berlin = Osnabrück

Multiple testing H₁: People from Berlin are more fashionable than people from Osnabrück.

H₀: Berlin = Osnabrück

Probability of randomly pulling the red marble?

Probability of randomly pulling one red marble out of one of the bowls?

$1 - (1 - 0.05)^2$ = 0.0975

The interpretation of the p-value is affected by researcher degrees of freedom

The garden of forking paths: Why multiple comparisons can be a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time^{*}

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis **Allows Presenting Anything as Significant**

Joseph P. Simmons¹, Leif D. Nelson², and Uri Simonsohn¹ ¹The Wharton School, University of Pennsylvania, and ²Haas School of Business, University of California, Berkeley

Andrew Gelman[†] and Eric Loken[‡] 14 Nov 2013

> **Psychological Science** 22(11) 1359-1366 © The Author(s) 2011 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/0956797611417632 http://pss.sagepub.com

The interpretation of the p-value is affected by researcher degrees of freedom

abyou Laboratory Phonology

False-Po Flexibili Allows **F**

JOURNAL ARTICLE

Researcher degrees of freedom in phonetic research

Timo B. Roettger

Department of Linguistics, Northwestern University, Evanston, IL, US timo.b.roettger@gmail.com

Joseph P. Simmons¹, Leif D. Nelson², and Uri Simonsohn¹ ^TThe Wharton School, University of Pennsylvania, and ²Haas School of Business, University of California, Berkeley

choose a piece of clothing

choose part of clothing

choose concrete operationalization

Is there a relationship between **autism** and **vaccination**?

measure some stuff...

Evaluate that measured stuff using **statistical inference**

Publish findings in a scientific journal

sampling error

can lead to wrong inferences about the underlying population

dichotomous decision making

is subject to false positives and false negatives

sampling error

can lead to wrong inferences about the underlying population

dichotomous decision making

is subject to false positives and false negatives

analytical flexibility

can amplify human error and bias

the publication system

rewards certain results more than others

Full References

- 255-278.
- neuroscience. Nature Reviews Neuroscience, 14(5), 365.
- Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of verbal learning and verbal behavior, 12(4), 335-359.
- Fox, N., Honeycutt, N., & Jussim, L. (2018). How Many Psychologists Use Questionable Research Practices? Estimating the Population Size of Current QRP Users.

Gelman, A., & Loken, E. (2013). The garden of forking paths: Why multiple comparisons can be a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time. Department of Statistics, Columbia University.

524-532.

Roettger, T. B. (2019). Researcher degrees of freedom in phonetic research. Laboratory Phonology: Journal of the Association for Laboratory Phonology, 10(1). Schönbrodt, F. D. (2016). p-hacker: Train your p-hacking skills! Retrieved from http://shinyapps.org/apps/p-hacker/.

- Psychological science, 22(11), 1359-1366.
- Vasishth, S., Mertzen, D., Jäger, L. A., & Gelman, A. (2018). The statistical significance filter leads to overoptimistic expectations of replicability. Journal of Memory and Language, 103, 151-175.

Winter, B. (2011). Pseudoreplication in phonetic research. In Proceedings of the international congress of phonetic science: Hong Kong (pp. 2137-2140). Winter, B. (2015). The other N: the role of repetitions and items in the design of phonetic experiments. In Proceedings of the 18th International Congress of Phonetic Sciences.

Glasgow: The University of Glasgow.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of memory and language, 68(3),

Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of

John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological science, 23(5),

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant.