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s there a relationship @ Donald J. Trump
between autism and

vaccination” Yuge scientific finding: Vacination caused autism in
pillions of children.
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Null-Hypothesis Significance Testing

0. Set up the Alternative Hypothesis (Ha).

1. Set up the Null-Hypothesis (Ho).

2. Calculate the probability of the results under Ho (p value).
3. Reject Howhen p < 0.05, else do not reject.






Ha: Drunken people diverge more from a
straight line than sober people.

H.: drunk > sober

Ho: Drunken people diverge as much from
a straight line as sober people.

Ho: drunk = sober




Measuring the compatibility of the data

* this is a simplified version of the
formula to make a conceptual point,
please do not use this to actually

d iffe rence between g You ps calculate t-values as the actual

formulas are a bit more complicated
X —X
| 2

the larger t, l.
S D “nhoise”

the smaller p
sample

size

standard error (SE)
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the smaller p

standard error (SE)
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t value
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standard error (SE)

|
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Measuring the compatibility of the data

difference between groups

t value

| o5 __4-3.95

1 “hoise’”

standard error (SE)

|
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Measuring the compatibility of the data

difference between groups

t value

4 55= 4-3.9
0.2 *
24

standard error (SE)

sample
size




Measuring the compatibility of the data

difference between groups

t value

* 07 — 4-39
O 2 “noise”

sample
size

standard error (SE)
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t-value



Ho: drunk = sober

t-value



Ho: drunk = sober

p < 0.05 land p < 0.05 land
— —_—
t(100) = -1.984 t(100) = 1.984

Ho

t-value



y.[} .

drunken
26 21
12 3
8
17 12
3 2

1 9



Ho: drunk = sober significant

&

H.: drunk > sober”

p = 0.00524
t(100) = 2.6

t-value
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Null-Hypothesis Significance Testing

0. Set up the Alternative Hypothesis (H1).

1. Set up the Null-Hypothesis (Ho).

2. Calculate the probability of the results under Ho (p value).
3. Reject Howhen p < 0.05, else do not reject.
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Ho: drunk = sober
Ho Is actually true

observed
In sample



- e

-

-

-

P = -
S s E "S>

-~

Faise Negative

Type-Ill error

RY
s
N

A

Xi
Y




Ho: drunk = sober p =0.193

true effect
H.: drunk > sober

-3 0

observed
In sample
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Things that can go wrong

Erroneously rejecting the null

Type-Il error

Type-ll €rror Erroneously failing to reject the null

Type-M @rror Overconfident estimation of the magnitude of the effect

Type-S error Overconfident estimation of the sign of the effect



Type-M error
Overconfident estimation of the true effect
magnitude of the effect H.: drunk > sober

drunk < sober drunk > sober

observed
In sample



Type-S error
Overconfident estimation of the true effect

ign of the effect
sign of the effec Ha: drunk > sober

drunk < sober drunk > sober

———/
——1 3

-3 4 0 3 6

observed
In sample
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not significant /'
p > 0.05

Not published and
never seen again

Evaluate that
measured stuff

using statistical
iInference
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Publish findings in
a scientific journal
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Why do we have to be careful
interpreting p-values?

We make statistical errors

Our studies have not enough power



Power = 1 - Type Il error

Probabillity of correctly failing Probability of erroneously
to reject the null hypothesis failing to reject the null

t value difference
4 - 2 between
4 — groups

“noise”

6
24 e &

standard error (SE)
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Small
samples size

Type M &
Type S errors

leads to increased

means

means
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100 4

Effect 15 ms, SD 100,
n=20, power=0.10
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Statistical power is often low

Button et al. (2013) Power failure: why small sample size undermines the reliability of
neuroscience. Nature Reviews Neuroscience, 14(5), 365.
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Why do we have to be careful
interpreting p-values?

We make statistical errors
Our studies have not enough power

We explore researcher degrees of freedom












Multiple testing

H1: People from Berlin are more Ho: Berlin = Osnabruck
fashionable than people from Osnabruck.

More V-necks
p=0.6
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Multiple testing

H1: People from Berlin are more Ho: Berlin = Osnabruck
fashionable than people from Osnabruck.

More V-necks
p=0.6

More colorful
P = 0.04



Probability of randomly
pulling the red marble? 0.05

x 19




Probability of randomly
pulling one red marble 1 — (1 - 005)2
out of one of the bowls?

= 0.0975

x 19




The interpretation of the p-value is affected
by researcher degrees of freedom

The garden of forking paths: Why multiple comparisons can be a problem,
even when there is no “fishing expedition” or “p-hacking” and the research
hypothesis was posited ahead of time*
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The interpretation of the p-value is affected
by researcher degrees of freedom

|1abHOU Laboratory Phonology Roettger, T. B. 2019 Researcher degrees of freedom in
19 pHO ) Choate Phonceay o o ’ phonetic research. Laboratory Phonology: Journal of the

Association for Laboratory Phonology 10(1): 1, pp.1-27. DOI:
https://doi.org/10.5334/labphon.147

JOURNAL ARTICLE
Researcher degrees of freedom in phonetic research

Timo B. Roettger
Department of Linguistics, Northwestern University, Evanston, IL, US
timo.b.roettger@gmail.com




choose a piece of clothing

pants shirt shoes

.




choose part of clothing

sleeve collar hack

.




choose concrete operationalization

color shape fabric
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things that can go wrong...

sampling error analytical flexibility

can lead to wrong inferences about can amplify human error and bias

the underlying population

dichotomous the publication system
dECiSiOn making rewards certain results more than others

IS subject to false positives and
false negatives
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