INTRODUCTION TO DATA ANALYSIS

HYPOTHESIS TESTING

PART I



LEARNING GOALS
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» become able to interpret & apply some statistical tests ‘ =
5}
\

» Pearson’s y*-tests of independence
p z-test
» one-sample t-test
» two-sample t-test
» one-way ANOVA
» understand differences and commonalities of different
approaches to frequentist testing
» Fisher

» Neyman/Pearson
» modern hybrid NHST




P-VALUE

p(Dg,) = P (TlHO >4 f (D))






PEARSON ,~-TESTS

» tests for categorical data (with more than two categories)
» two flavors:

» test of goodness of fit

» test of independence

» sampling distribution is a y*-distribution



»*-DISTRIBUTION

» standard normal random variables:
X, ...X,

» derived RV:
Y=X;+...+X;

» it follows (by construction) that:
y ~ y*-distribution(n)

0.5-

o
W

Density

0.1-

0.0-

o
N
1

X ~ Chi-Squared

(2) we= (4) w= (9)

15

20



PEARSON'S ,2-TEST (co0nNESS oF Fimy

BLIM_associated_counts <- data_BLJIM_processed %>%

select(submission_id,

pivot_wider(names_from = condition, values_from = response) %>%

condition,

response) %>%

# drop the Beach-vs—-Mountain condition
select(-BM) %>%

dplyr::count(JM,LB)

BLIM

associated counts

## # A tibble: 4 x 3

#H
#h
## 1
## 2
## 3
## 4

JM LB n
<chr> <chr> <int>

Jazz Biology 38

Jazz Logic 26
Metal Biology 20
Metal Logic 18

30-

20 -

10-

basellne expectahon]

Biolog.y-J azz Biolog;l/-M etal Logic'-Jazz Logic-'MetaI
category

s it conceivable that each category (= pair of music+subject choice)
has been selected with the same flat probability of 0.25?



FREQUENTIST MODEL FOR PEARSON'S ,,>-TEST (soooness oF Fim

6 n ~ Multinomial(p’, N)
- (ni — npi)2
np;

r=)

4 )
l Sampling distribution:
v? ~ y*-distribution(k — 1)

. )




PEARSON'S ,2-TEST [cooness oF Fm

N

i

observed counts

<- counts BLJM choice pairs_vector
proprortion predicted

<- rep(l/4,4)

expected number 1n each cell

<— sum(n)xp

=
¥ O T T =

chi-squared for observed data
chi2_observed <- sum((n-e)”2 x1/e)

chi2 observed

## [1] 9.529412

k 2
(n; — np;)
=), — i ’

n
=1 P

v ~ y*-distribution(k — 1)



PEARSON'S ,2-TEST [6o00NESS oF FiT

v ~ y*-distribution(k — 1)

p_value BLIM <- 1 - pchisg(chi2_observed, df = 3)

0.25-

0.20-

0.05-

0.00-

observed value
of test statistic

tail area =
0.02302
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PEARSON'S ,2-TEST [6o00NESS oF FiT

N

counts_BLJIM_choice_pairs_vector <— BLJM_associated_counts %>% pull(n)

chisqg.test(counts BLIJM choice pairs_vector)

—

n ##t
## Chi-squared test for given probabilities
g

## data: counts_BLJM_choice_pairs_vector
## X-squared = 9.5294, df = 3, p-value = 0.02302

k 2
(n; — np;)
=), — i ’

n
=1 P

v ~ y*-distribution(k — 1)



PEARSON'S ,2-TEST [cooness oF Fm

How to interpret / report the result:

Observed counts deviated significantly from what is expected if each category (here:

pair of music+subject choice) was equally likely (y*-test, with y* ~ 9.53, df = 3 and
p = 0.023).

What about the lecturer’s conjecture that
(colorfully speaking) logic + metal = &§?






STOCHASTIC INDEPENDENCE

» events A and B are stochastically independent iff
» intuitively: learning one does not change beliefs about the other;

» formally: P(A | B) = P(A)
» notice that P(A | B) = P(A) entails that P(B | A) = P(B) (see web-book)



STOCHASTIC INDEPENDENCE

Proposition 7.1 (Probability of conjunction of stochastically independent events)

For any pair of events A and B with non-zero probability:

P(ANnB) =P(A) P(B) |if Aand B are stoch. independent

Proof. By assumption of independence, it holds that P(A | B) = P(A). But then:

P(AnB) = P(A| B) P(B) def. of conditional probability|
= P(A) P(B) by ass. of independence|

—
e

Table 7.2: Joint probability table for a flip-and-draw scenario where the coin has a bias

of 0.8 towards heads and where each of the two urns hold 3 black and 7 white balls.

heads tails > rOWS
black 0.8 x0.3—=0.24 0.2 x 0.3 = 0.06 0.3
white 0.8 x 0.7 = 0.56 0.2 x0.7=0.14 0.7

>, columns 0.8 0.2 1.0




PEARSON'S ,2-TEST [INDEPENDENCE]

BLIM table <- BLIJM _assoclated _counts %>%
select(—-category) %>%
pivot_wider (names_from = LB, values_from = n)
BLIM table

## # A tibble: 2 X 3

##  IM Biology Logic
##  <chr> <int> <int>
## 1 Jazz 38 26
## 2 Metal 20 18

Is it conceivable that the outcome in each cell is given by
independent choices of row and column options?

Hence: is the probability of a choice of cell the product of the
probability of row- and column choices?



FREQUENTIST MODEL FOR PEARSON'S ,>-TEST noepenpence

o e p = vec. of outer product ¥ & ¢
7 ~ Multinomial(p’, N)

k 2
(ni — npi)
oyl

I/
- 2

l Sampling distribution:

v* ~ y*-distribution ((k,, — 1) - (k. — 1))
— v,




FREQUENTIST MODEL FOR PEARSON'S ,>-TEST noepenpence

@

# number of observations 1n total

N <— sum(counts BLIM choice pairs _matrix)

# marginal proportions observed 1n the data

# the following 1s t
row_prob <- counts_B
# the followling 1s t

col_prob <- counts_ B

ne vector r in the model graph
LIJM_choice_pairs_matrix %>% rowSums() / N

ne vector ¢ 1n the model graph

| JM_choice pairs matrix %>% colSums() / N

# table of expected observation under independence assumption

# NB: %0% 1s the outer product of vectors

BLIM _expectation_mat

BLIM_expectation_mat

#it Biology
## Jazz 36.39216 27
## Metal 21.60784 16

rix <— (row_prob %0% col prob) % N

rix

Logic
.00784
.39216




FREQUENTIST MODEL FOR PEARSON'S ,>-TEST noepenpence

chi2 observed <- sum(

(counts_BLIM choice pairs_matrix - BLIM expectation matrix)”2 /
BLIM expectation_matrix
N |
p_value BLIM <- 1-pchisq(g = chi2_ observed, df = 1)

round(p value BLIM,5)

## [1] 0.50615
p)
ey
1 np;



FREQUENTIST MODEL FOR PEARSON'S ,>-TEST noepenpence

:

=
by e
2 observed value
D
©

of test statistic

taill area =
l 0.50615




FREQUENTIST MODEL FOR PEARSON'S ,>-TEST noepenpence

# supply data as a matrix, not as a vector, for test of independence
counts BLIM choice pairs _matrix,

lhvr # do not use a the default correction (because we didn't introduce it)
correct = FALSE

—_— ##

chisq.test |

## Pearson's Chi-squared test

i

## data: counts_BLIM _choice_pairs_matrix

## X-squared = 0.44202, df = 1, p-value = 0.5061



FREQUENTIST MODEL FOR PEARSON'S ,>-TEST noepenpence

How to interpret / report the result:

A y?-test of independence did not yield a significant test result (y?-test, with y? ~ 0.44, df = 1 and
p ~ 0.9). Therefore, we cannot claim to have found any evidence for the research hypothesis of

dependence.






SCENARIO FOR A Z-TEST [oNE-SAMPLE]

» metric variable X with samples from normal distribution

» unknown

» known o [usually unrealistic!]

IQ _data <- ¢(87, 91, 93, 97, 100, 101, 103, 104, . . . . .
s it plausible to maintain that this
104, 105, 105, 106, 108, 110, 111,

112, 114, 115, 119, 121) data was generated by a normal
mean(10_data) distribution with mean 100 (if we
assume that the standard deviation

e is known to be 15)?



FREQUENTIST MODEL FOR A Z-TEST [ONE-SAMPLE]

x; ~ Normal(y, o)

Z:

L
>

Sampling distribution:

z ~ Normal(0,1)



FREQUENTIST Z-TEST [APPLICATION]

4 A
x; ~ Normal(u, o)

z ~ Normal(0,1)
\_ 4/

# number of observations
N <- length(IQ _data)
# null hypothesis to test

observed value
of test statistic

mu @ <— 100

# standard deviation (known/assumed as true) 4 2 0 2
sd <= 15 Z

z_observed <- (mean(IQ_data) - mu_Q) / (sd / sqrt(N)) p_value_IQ_data <- 1 - pnorm(z_observed)
z observed %% round(4) p_value_IQ_data %>% round(6)

## [1] 1.5802 ## [1] 0.057036

tail area =
0.057036




FREQUENTIST Z-TEST [appLicATION

- /N
x; ~ Norj BSDA::z.test(x = IQ_data, mu = 100, sigma.x = 15, alternative =
X —
Z:
o/
it
z ~ Noll ## One-sample z-Test
- it
## data: IQ data
# number of observa ## z = 1.5802, p-value = 0.05704
N <- length(IQ datol ## alfernative hypothesis: trué&Xmean 1s greater than 100

# null hypothesis t
mu @ <— 100

##

# standard deviatio

sd <—= 15

##
T

z_observed <- (

Z observed %>% jfou

## [1] 1.5802

95 percent confidence interva\:

99.78299 NA
sample estimates:
mean of X

105. 3

## [1] 0.057036

"greater")

tail area =

0.057036







FREQUENTIST T-TEST MODEL [oNE-SAMPLE]

x; ~ Normal(u, o)

&=\ nilzm—mz

Sampling distribution:

t ~ Student-t(v =n — 1)
- Y




t-DISTRIBUTION

» two random variables:
x ~ Normal(0,1)
y ~ )(Z-distribution(n)

» derived RV:
X
o —
Y/n

» it follows (by construction) that:
z ~ Student-t(v =n — 1)

0.4-

0.3-

0.2-

0.1-

0.0-

X~t

(1) == (10) == (2)




FREQUENTIST T-TEST [appLicATION

0.4-
4 )
x; ~ Normal(u, o)
1 n
A 2 )
0 = Z (X; — px) U3
n—1_1 4
=1
X = Ky 2
[ = N2
6/\/n 5
.qca observed value
of test statistic
t ~ Student-t(v =n—1)
. ) 0.1-
tail area =
N <- length(IQ_data) 0.007992
# fix the null hypothesis
0.0-
mean 0 <- 100 ,
. . _ -4 -2 0 2 4
# unlike 1n a z-test we use the sample to estimate SD t
sigma_hat <- sd(IQ_data)
t observed <— (mean(IQ data) - mean_0) / sigma_hat * sqrt(N) p_value_t_test_IQ <- 1 - pt(t_observed, df = N-1)
t _observed %>% round(4) p_value_t_test_IQ %>% round(6)

## [1] 2.6446 ## [1] 0.007992



FREQUENTIST T-T

-
x; ~ Norme
. 1
O —
n —
t_X—ﬂo
6I\/n
t ~ Student
\_

N <— length(IQ_data)

# fix the null hypothesis
mean_ 0 <-— 100

# unlike 1n a z-test we usg
sigma_hat <- sd(IQ_data
t_observed <- (mean(J4_data)

t observed %>% rousd(4)

## [1] 2.6446

\ UL | 'l

t.test(x = IQ _data, mu = 100, alternative = "greater")

H##
Fr
#it
##
H##
S

H##
##
#it
##

One Sample t-test

yserved value

data: IQ data test statistic
t = 2.6446, df = 19, p-value = 0.007992

sAternative hypothesis: true mean/is greater than 100 :Eﬁ;;]
95 percent confidence interval: v

101.8347 Inf
sample estimates:

mean of X )
105.3

## [1] 0.007992



ample

|

ta, equal variance &
mple size)



COMPARING TWO GROUPS OF METRIC MEASURES

type I:I conventional I:I organic

1.5-

s it plausible to assume that the observed
prices for conventional and organic
avocados could have been generated by
a single normal distribution?

1.0-

0.5-

0.0-

1' 2 3
average weekly price



FREQUENTIST T-TEST MODEL [two-SAMPLE, UNPAIRED, EQUAL VARIANCE, UNEQUAL SAMPLE SIZES]

o @ x4 ~ Normal(u + 6, o)
B

Normal(u, o)

X,

Sampling distribution:
t ~ Student-t(v = n, + ng — 2)
\_ J




& A

TWO-SAMPLE T-TEST EXAMPLE ! ~ Normal( + 5,0

xl.B ~ Normal(u, o)

# fix the null hypothesis: no difference between groups

) )
delta_0 < @ n (ny —Dog+mg—1)og (1 1
O = ]
# data (group A) 0.4- Mg + Np — 2 7\ Np
X _A <— avocado_data %>% 1
filter(type == "organic") %>% pull(average_price) I = ((XA — XB) — 5) "o
0]
# data (group B)
0.3- t ~ Student-t(v = n, + ng — 2)
X B <— avocado data %>% ' \g 4)
filter(type == "conventional") %>% pull(average_price)
# sample mean for organic (group A)
A <— mean(x_ A)
mu_A <— mean(x_ 05-

# sample mean for conventional (group B)

observed value

mu_B <- mean(x_B) of test statistic

# numbers of observations
n_A <— length(x_A) 0.1-
n_B <— length(x_E)
# variance estimate
sigma_AB <- sqrt(
( ((n_A -1) % sd(x_A)*2 + (n_B -1) x sd(x_B)"~2 ) /
(n_A + n_B -2) ) x (1/n_A + 1/n_B) 50 0 50 100

)

p_value_t_test_avocado <- 1 - pt(q = t_observed, df = n_A + n_B - 1)
t observed <- (mu_ A - mu_ B - delta @) / sigma_AB

p_value_t_test_avocado
t _observed

## [1] 105.5878 ## [1] ©




TWO-SAMPLE T-TH == )
| _ , X = X_A, # first vector of data measurements
# fix the null hypothesis: no di 5
delta 0 < 0 y = X_B, # sec vector of data measurements B — I)GB 1 1
# data (group A) paired = FALSE, # measurements are to be treated as unpaired ) ;;_'+';;_
A B
Xx_A <— avocado_data %>% var.equal = TRUE, # we assum equal variance in both groups 1
filter(type == "organic") %>% mu = 0 # NH is delta = @ (name 'mu' is misleading!)
# data (group B)
X B <— avocado data %>% 4)
filter(type == "conventional")

# sample mean for organic (group
i

## Two Sample t-test

mu A <— mean(x_A)

# sample mean for conventional (

observed value
mu_B <- mean(x_B) ## of test statistic
# numbers of observations ## data: x A and x B
I = R ## t = 105.59, df = 18247, p-value < 2.2e-16

n_B <= length(x_B) ## alfernative hypothesis: true differgnce in means is not equal to @

# variance estimate . .
95 percent confidence interval:

## 0.4867522 ©.5051658

## sample estimates: 100

sigma_AB <- sqgrt(
( ((n_A -1) *x sd(x_A)*2 + (n_j
(n_.A+nB -2) ) x (1/pfA

)
t_observed <- (mu_A - pd'B - delf ## 1,653999 1.158040

t observed

## mean of x mean of vy ed, df =n A+nB-1)

## [1] 105.5878 ## [1] ©







COMPARING K > 2 GROUPS OF METRIC MEASURES

80 -
70-
60 -

50- Is it plausible to assume that
these measures stem from the
same normal distribution?



WHY NOT 7-TESTS?

» we could run 7-tests between
different groups

» chance of a error rises with
each comparison
» common corrections apply

» gets tedious with large k

80 -

70-

60 -

50 -



FREQUENTIST MODEL FOR ANOVA [oNE-WAY]

o
x;; ~ Normal(u, 6) F = Petween
O within
k n; —\2
A ijl Z/:l (X — X))
Owithin = .
Zi=1 (ni - 1)
k — =\
A Zj:l (X — X)
Obetween — I — 1

(Sampling distribution: \

k
F ~ F-distribution (k -1, Z (n, — 1))
i=1

_ J




F-STATISTIC EXAMPLES

F=4 g : F =8.14 : :
é + —
E— - o
: —
.
A B C poc;Ied A B C pocSIed
F=209] o g F=93.3 -
C o = ®
_ — e o
- 2 -
— = + *’ = *-
: ® .
5
B :

A B C poc;Ied A B C poéled



F-DISTRIBUTION

» two y*-distributed random variables:
x ~ y*-distribution(m)
y ~ y*-distribution(n)

» derived RV:
X/m

o —
Y/n

» it follows (by construction) that:
z ~ F-distribution(m, n)

1.00-

0.75-

0.50-

0.25-

0.00-

X ~F

(12,12) wm (2,4) wm (46)



EXAMPLE

80 -

70~

60 -

50 -

e & oo

o000 O® ©

(o]

o
*
Q
Q
o]

C

aov(formula = value ~ condition, anova_data) %>% summary()

H# Df Sum Sq Mean Sq
## condition 2 640.8 320.4
## Residuals ~ 42 3000.3 71.4
## ——-

## Signif. Codes: 0 '¥kk' 0.001

F value Pr(>F)
4.485 0.0172 *

"' 0.01 'x' 0,05 '."' 0.1 ' '

Based on a one-way ANOVA, we find evidence against the assumption of equal
means across all groups (£'(2,42) ~ 4.485, p ~ 0.0172))






THREE VARIETIES OF FREQUENTIST TESTING

FISHER NEYMAN/PEARSON| HYBRID NHST*
explicit & serious X ‘/ X
alternative H,
when to set-up after data before data after data
statistical model collection collection collection

goal of statistical
analysis

quantify evidence
against Ho

decide action:
adopt Hp or H;

decide action:
adopt Ho or = Hy

power calculation

X

v

X

* this is a worst-case portrait of modern NHST ; this is not how it should be done



NEYMAN/PEARSON APPROACH [iNForMAL GIST

» procedure in N/P approach:
» fix Ho and H, (based on prior research)
determine desired a- and [3-error level
calculate sample size N necessary for 3 given a

determine significance based on a-level
make a dichotomous decision:

» accept H, if test is significant

» accept Hp otherwise

4
4
» run the experiment
4
4

area = 3-error area = a-error

H O H a



LONG-TERM ERROR CONTROL IN NEYMAN/PEARSON APPROACH

[more data = tighter curves!! = lower ]
[sampling distribution of mean under Hy] [sampling distribution of mean under H,]
[B error = accept Hop when H; is true] [a error = accept H, when Hy is true]
area = [3-error area = o-error

| >

H O H a

[null-hypothesis] [alternative hypothesis]



EXAMPLES FROM TEXTBOOKS

neither textbook talks about fixing Ha
and/or calculating power of a test

Lothar Papula

Mathematik fur Ingenieure
und Naturwissenschaftler
Band 3

/. Aufiage

Z1 Springer Vieweg




THREE VARIETIES OF FREQUENTIST TESTING

FISHER NEYMAN/PEARSON| HYBRID NHST*
explicit & serious X ‘/ X
alternative H,
when to set-up after data before data after data
statistical model collection collection collection

goal of statistical
analysis

quantify evidence
against Ho

decide action:
adopt Hp or H;

decide action:
adopt Ho or = Hy

power calculation

X

v

X

* this is a worst-case portrait of modern NHST ; this is not how it should be done



RIS il e R RN N TN . o S

R
’_Vi\\":.‘_\’:-_

T H )-*"iﬁ.&m

AR S S S e AN RGO e Aol '

Wi N 4_v\..‘-\~-,.‘-».'..—-"‘*".~6 .b\
B R
> 1
o wa {
A0 ol
b :
.

Ty
X




