INTRODUCTION TO DATA ANALYSIS

HYPOTHESIS TESTING

PART I



LEARNING GOALS
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» get more intimate with p-values ‘
\
» distribution under true H, )

» relation to confidence intervals

» develop a basic sense of how clever math (e.g., Central
Limit Theorem) helps approximate sampling distributions

» we don't aim for perfect understanding of this math in this course!
» become able to interpret & apply some statistical tests

» Pearson’s y’*-tests
p z-test
» one-sample t-test







RECAP

BAYESIAN PARAMETER ESTIMATION

» model M captures prior beliefs

about data-generating process
» prior over latent parameters
» likelihood of data

» Bayesian posterior inference using
observed data D,

» compare posterior beliefs to some
parameter value of interest

FREQUENTIST HYPOTHESIS TESTING

4

model M captures a hypothetically

assumed data-generating process
» fix parameter value of interest
» likelihood of data

single out some aspect of the data
as most important (test statistic)

look at distribution of test statistic
given the assumed model
(sampling distribution)

check likelihood of test statistic

applied to the observed data D,



P-VALUE

p(Dg,) = P (TlHO >4 f (D))



RELATION OF P-VALUES AND CONFIDENCE INTERVALS

» assumptions:
» p-value and Cl are constructed / approximated in the same way

» two-sided test with H,y: 6 = @, and alternative H : 0 # 0,

» correspondence result:

p(D) < a iff 6, ¢& CI(D)
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LAW OF LARGE NUMBERS

Theorem 10.2 (Law of Large Numbers) Let X, ..., X, be a sequence of n differentiable random

variables with equal mean, such that Ky = pux foralll <1 < n. °0 As the number of samples n goes to

infinity the mean of any tuple of samples, one from each X,;, convergences almost surely to (i x:

J L
Pl lim —E X,i=ux| =1
n—o0 N, 4
1=1

# sample from a standard normal distribution (mean = 0, sd = 1) 0.000-
samples <- rnorm(100000)
# collect the mean after each 10 samples & plot
tibble! 00287

n = seq(100, length(samples), by = 10)

) %>% E

-0.050-
group_by(n) %>%

mutate(

mu = mean(samples[l:n]) -
) %>%

ggplot(aes(x = n, y = mu)) +

geom_line () 0 25000 50000 75000 100000



CENTRAL LIMIT THEOREM

Theorem 10.3 (Central Limit Theorem) Let X1, ..., X,, be a sequence of n differentiable

random variables with equal mean Ex, = px and equal finite variance Var(X;) = o% for all

1 <1< n.°" The random variable Sn, which captures the distribution of the sample mean for

any n Is:

1 n

As the number of samples n goes to infinity the random variable \/n (Sn — I X) converges in

distribution to a normal distribution with mean 0 and standard deviation o x.

CLT gives us information about the distribution of estimated means, e.g., as
when we estimate repeatedly in different (hypothetical experiments).






PEARSON ,~-TESTS

» tests for categorical data (with more than two categories)
» two flavors:

» test of goodness of fit

» test of independence

» sampling distribution is a y*-distribution



»*-DISTRIBUTION

» standard normal random variables:
X, ...X,

» derived RV:
Y=X;+...+X;

» it follows (by construction) that:
y ~ y*-distribution(n)
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Density
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X ~ Chi-Squared

(2) we= (4) w= (9)
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PEARSON'S ,2-TEST (co0nNESS oF Fimy

BLIM_associated_counts <- data_BLJIM_processed %>%
select(submission_id, condition, response) %>%
pivot_wider(names_from = condition, values_from = response) %>%
30-

# drop the Beach-vs—-Mountain condition

select(-BM) %>% [baseline expectation]

dplyr::count(JM,LB)

BLIM associated counts

20 -

## # A tibble: 4 x 3

##  IM LB n
##  <chr> <chr> <int>
## 1 Jazz Biology 38
## 2 Jazz Logic 26
## 3 Metal Biology 20
## 4 Metal Logic 18

10-

Biolog.y-J azz Biolog;l/-M etal Logic'-Jazz Logic-'MetaI
category

s it conceivable that each category (= pair of music+subject choice)
has been selected with the same flat probability of 0.25?



FREQUENTIST MODEL FOR PEARSON'S ,,>-TEST (soooness oF Fim

Z

n ~ Multinomial(p’, N)
k

(n; — np;)°
) . l [
! lzzl np;

" FACT:

The sampling distribution of y? is
approximately:

! )(2 ~ )(z-distribution(k — 1)




PEARSON'S ,2-TEST [cooness oF Fm

N

i

observed counts

<- counts BLJM choice pairs_vector
proprortion predicted

<- rep(l/4,4)

expected number 1n each cell

<— sum(n)xp

=
¥ O T T =

chi-squared for observed data
chi2_observed <- sum((n-e)”2 x1/e)

chi2 observed

## [1] 9.529412

k 2
(n; — np;)
=), — i ’

n
=1 P

v ~ y*-distribution(k — 1)



PEARSON'S ,2-TEST [6o00NESS oF FiT

v ~ y*-distribution(k — 1)

p_value BLIM <- 1 - pchisg(chi2_observed, df = 3)

0.25-

0.20-

0.05-

0.00-

observed value
of test statistic

tail area =
0.02302
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PEARSON'S ,2-TEST [6o00NESS oF FiT

N

counts_BLJIM_choice_pairs_vector <— BLJM_associated_counts %>% pull(n)

chisqg.test(counts BLIJM choice pairs_vector)

—

n ##t
## Chi-squared test for given probabilities
g

## data: counts_BLJM_choice_pairs_vector
## X-squared = 9.5294, df = 3, p-value = 0.02302

k 2
(n; — np;)
=), — i ’

n
=1 P

v ~ y*-distribution(k — 1)



PEARSON'S ,2-TEST [cooness oF Fm

How to interpret / report the result:

Observed counts deviated significantly from what is expected if each category (here:

pair of music+subject choice) was equally likely (y*-test, with y* ~ 9.53, df = 3 and
p = 0.023).

What about the lecturer’s conjecture that
(colorfully speaking) logic + metal = &J?



