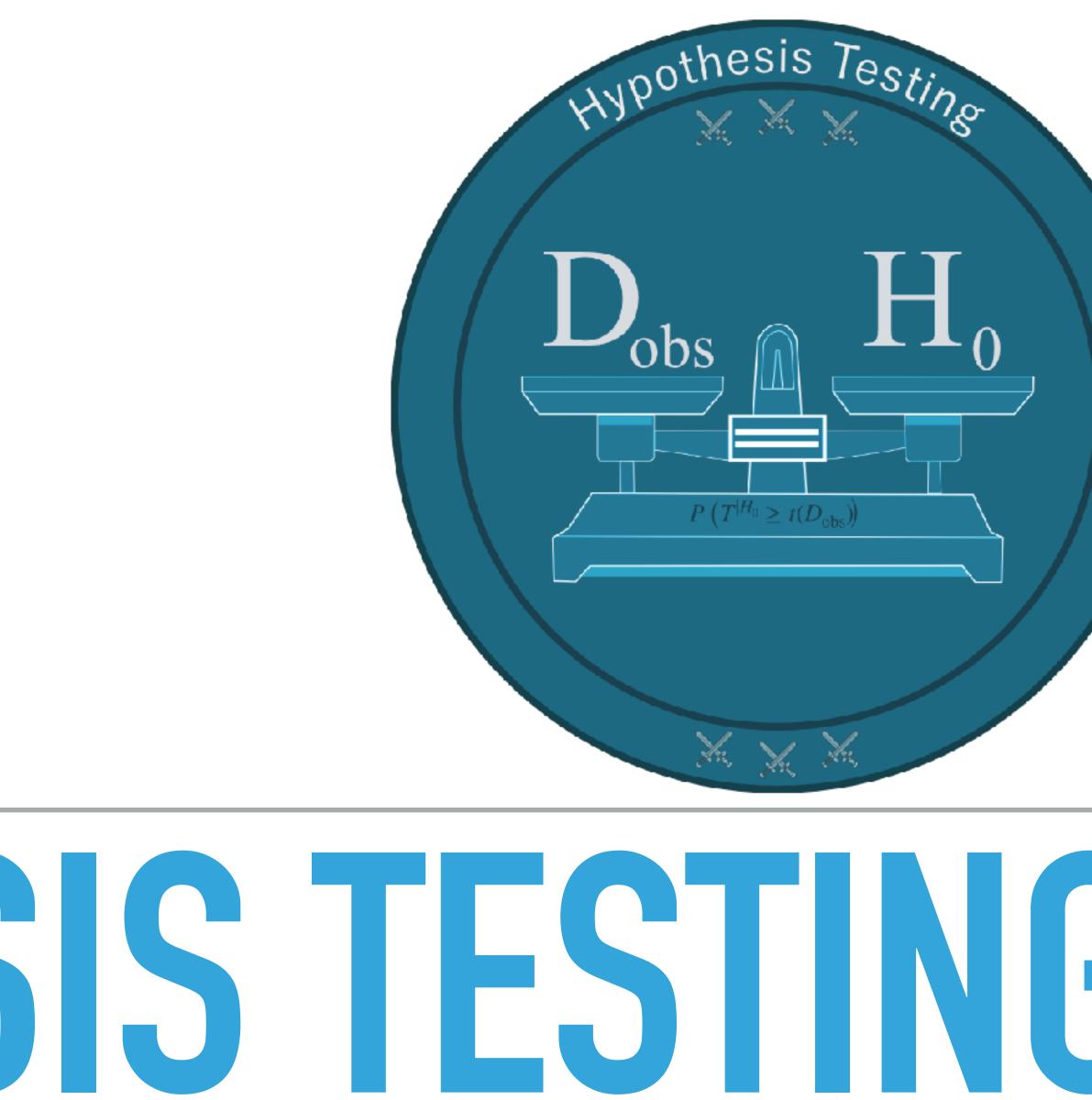
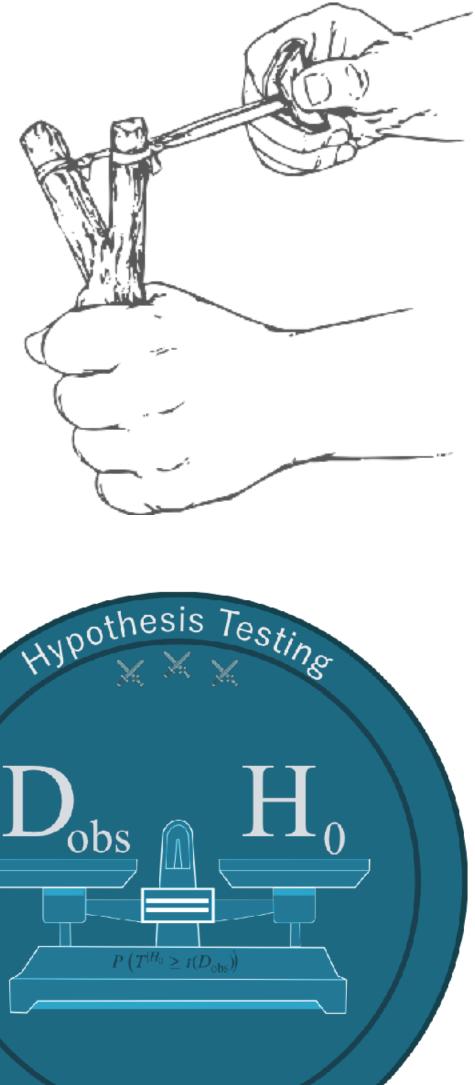


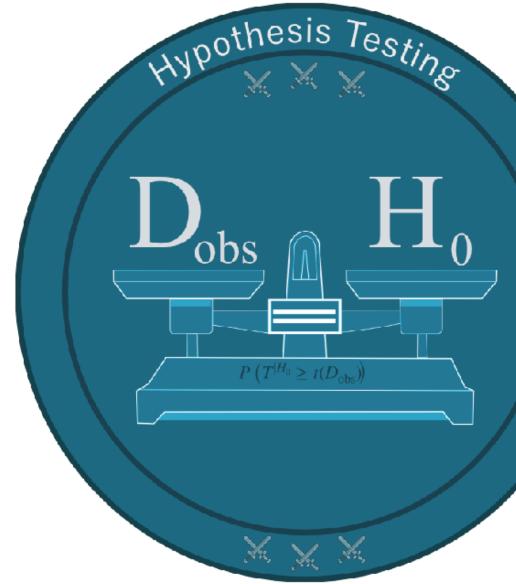
INTRODUCTION TO DATA ANALYSIS

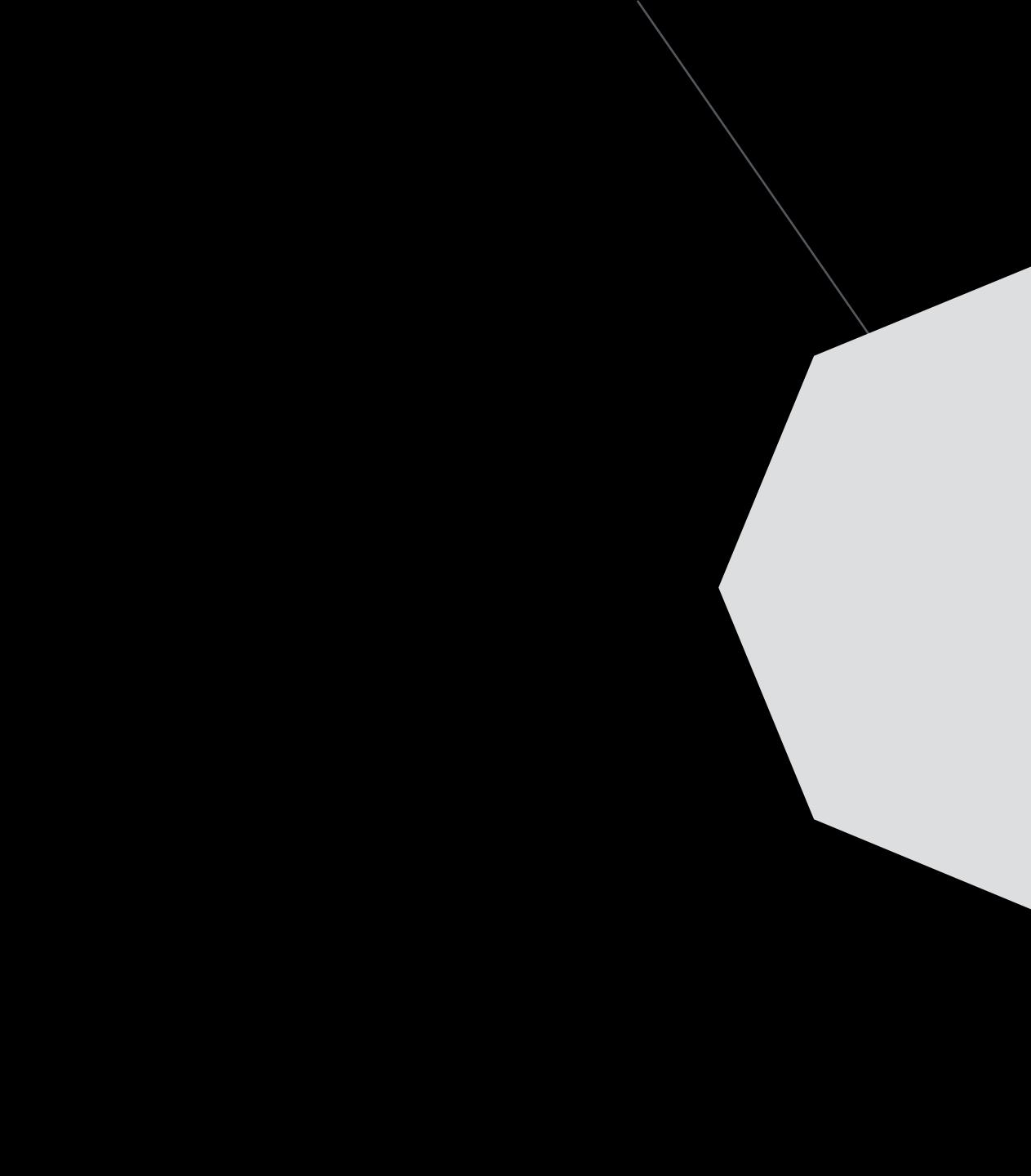


LEARNING GOALS

- get more intimate with p-values
 - distribution under true H_0
 - relation to confidence intervals
- develop a basic sense of how clever math (e.g., Central Limit Theorem) helps approximate sampling distributions > we don't aim for perfect understanding of this math in this course!
- become able to interpret & apply some statistical tests Pearson's χ^2 -tests
 - > z-test
 - one-sample *t*-test







D-Value revisit

RECAP

BAYESIAN PARAMETER ESTIMATION

- model M captures prior beliefs about data-generating process
 - prior over latent parameters
 - likelihood of data
- Bayesian posterior inference using observed data D_{obs}
- compare posterior beliefs to some parameter value of interest

FREQUENTIST HYPOTHESIS TESTING

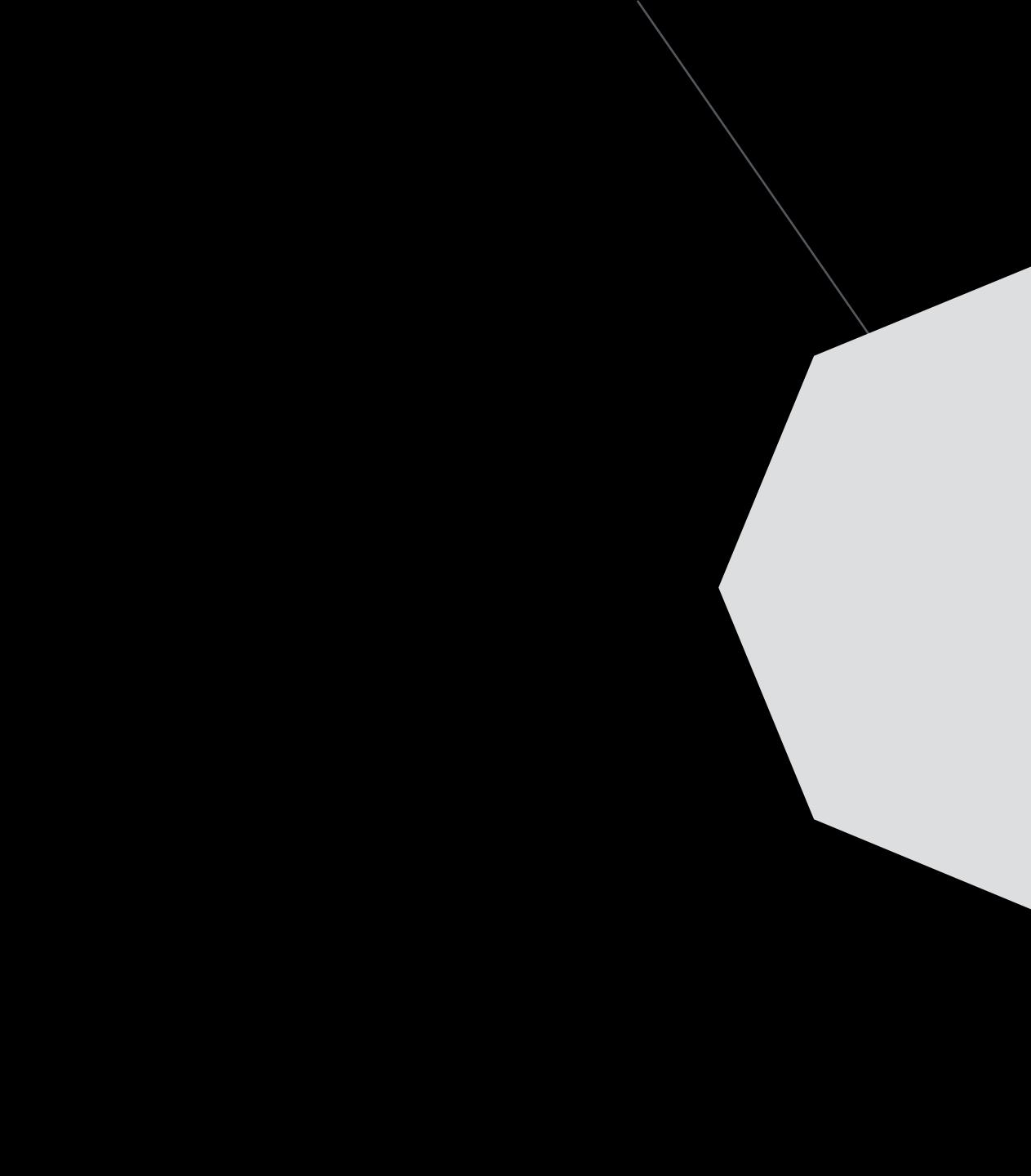
- model M captures a hypothetically assumed data-generating process fix parameter value of interest
 - likelihood of data
- single out some aspect of the data as most important (test statistic)
- Iook at distribution of test statistic given the assumed model (sampling distribution)
- check likelihood of test statistic applied to the observed data D_{obs}



RELATION OF P-VALUES AND CONFIDENCE INTERVALS

- assumptions:
 - p-value and CI are constructed / approximated in the same way
 - two-sided test with H_0 : $\theta = \theta_0$ and alternative H_a : $\theta \neq \theta_0$
- correspondence result:

$p(D) < \alpha$ iff $\theta_0 \notin Cl(D)$



approximating sampling distributions

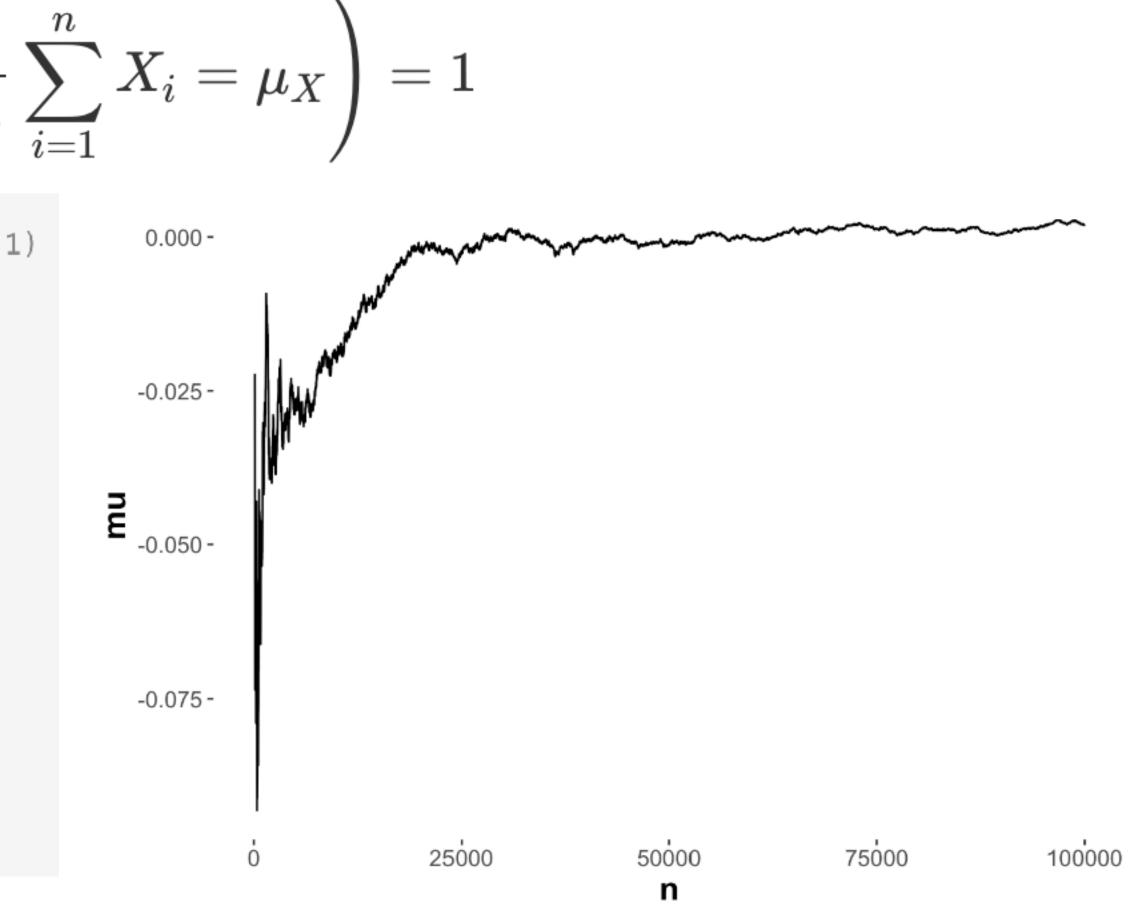
LAW OF LARGE NUMBERS

infinity the mean of any tuple of samples, one from each X_i , convergences almost surely to μ_X :

$$P\left(\lim_{n o\infty}rac{1}{n}
ight.$$

```
# sample from a standard normal distribution (mean = 0, sd = 1)
samples <- rnorm(100000)</pre>
# collect the mean after each 10 samples & plot
tibble(
 n = seq(100, length(samples), by = 10)
  ) %>%
  group_by(n) %>%
  mutate(
  mu = mean(samples[1:n])
  %>%
  ggplot(aes(x = n, y = mu)) +
  geom_line()
```

Theorem 10.2 (Law of Large Numbers) Let X_1, \ldots, X_n be a sequence of n differentiable random variables with equal mean, such that $\mathbb{E}_{X_i}=\mu_X$ for all $1\leq i\leq n$.⁶⁰ As the number of samples n goes to



CENTRAL LIMIT THEOREM

Theorem 10.3 (Central Limit Theorem) Let X_1, \ldots, X_n be a sequence of n differentiable random variables with equal mean $\mathbb{E}_{X_i}=\mu_X$ and equal finite variance $\mathrm{Var}(X_i)=\sigma_X^2$ for all $1 < i < n.^{61}$ The random variable S_n which captures the distribution of the sample mean for any n is:

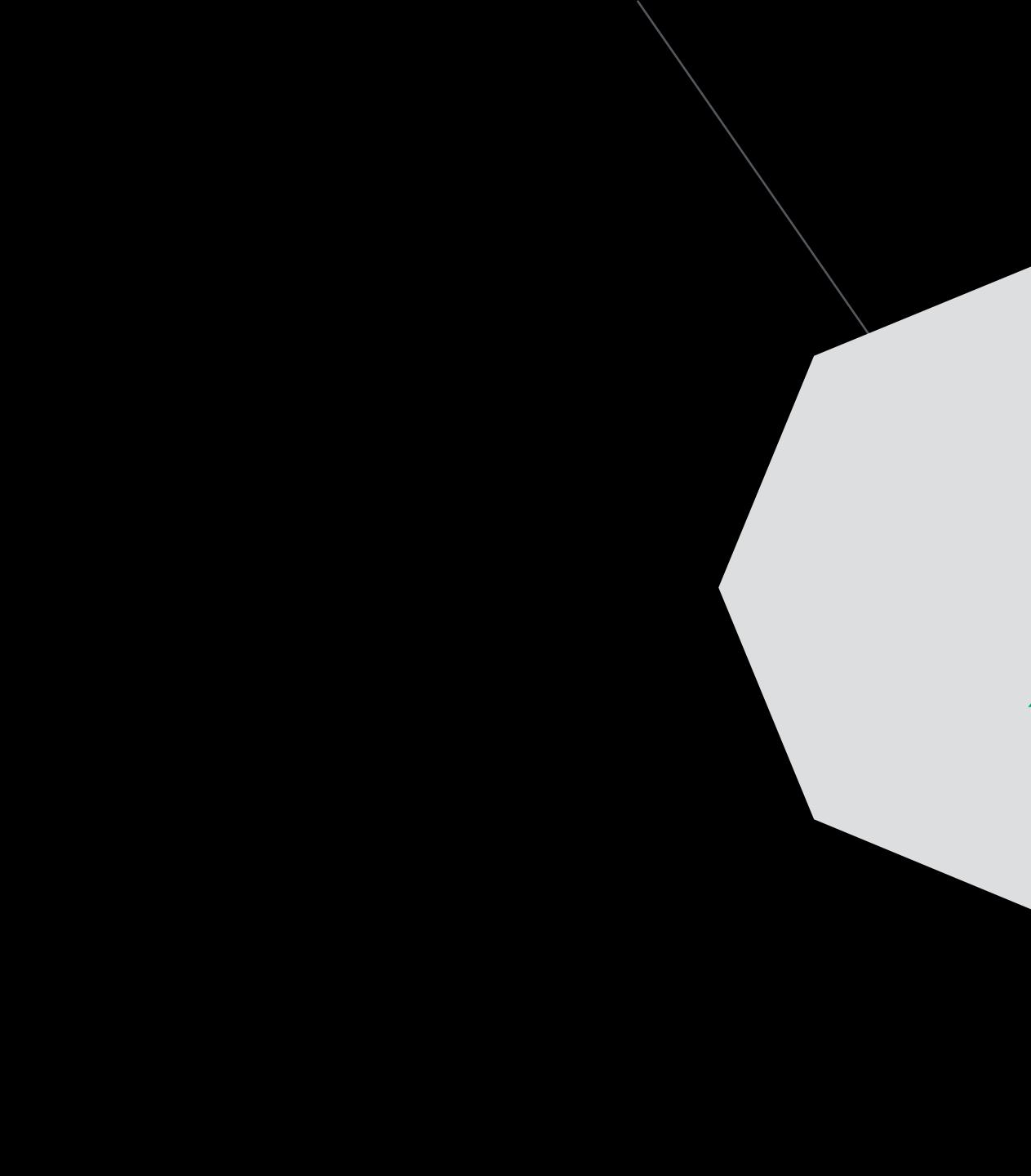
 $S_n =$

distribution to a normal distribution with mean 0 and standard deviation σ_X .

CLT gives us information about the distribution of estimated means, e.g., as when we estimate repeatedly in different (hypothetical experiments).

$$=rac{1}{n}\sum_{i=1}^n X_i$$

As the number of samples n goes to infinity the random variable $\sqrt{n}(S_n - \mu_X)$ converges in

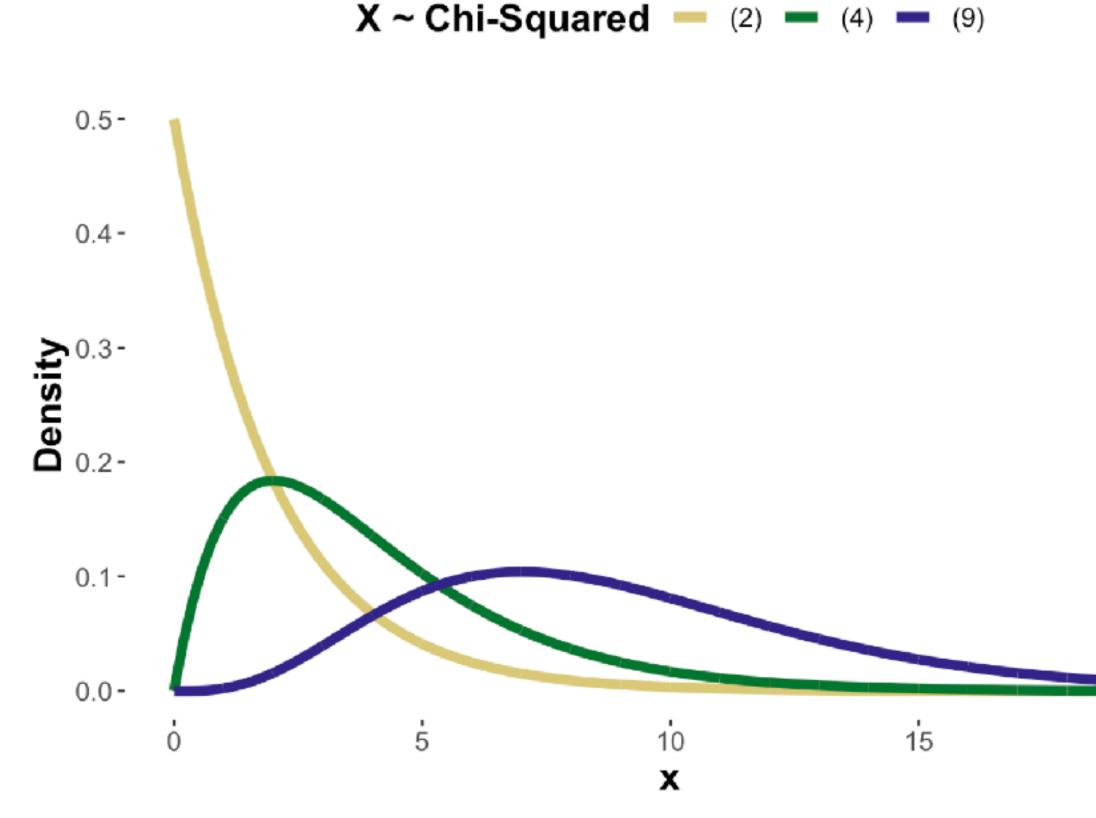


Pearson's 2-tests

PEARSON χ^2 -**TESTS**

- tests for categorical data (with more than two categories)
- two flavors:
 - test of goodness of fit
 - test of independence
- sampling distribution is a χ^2 -distribution

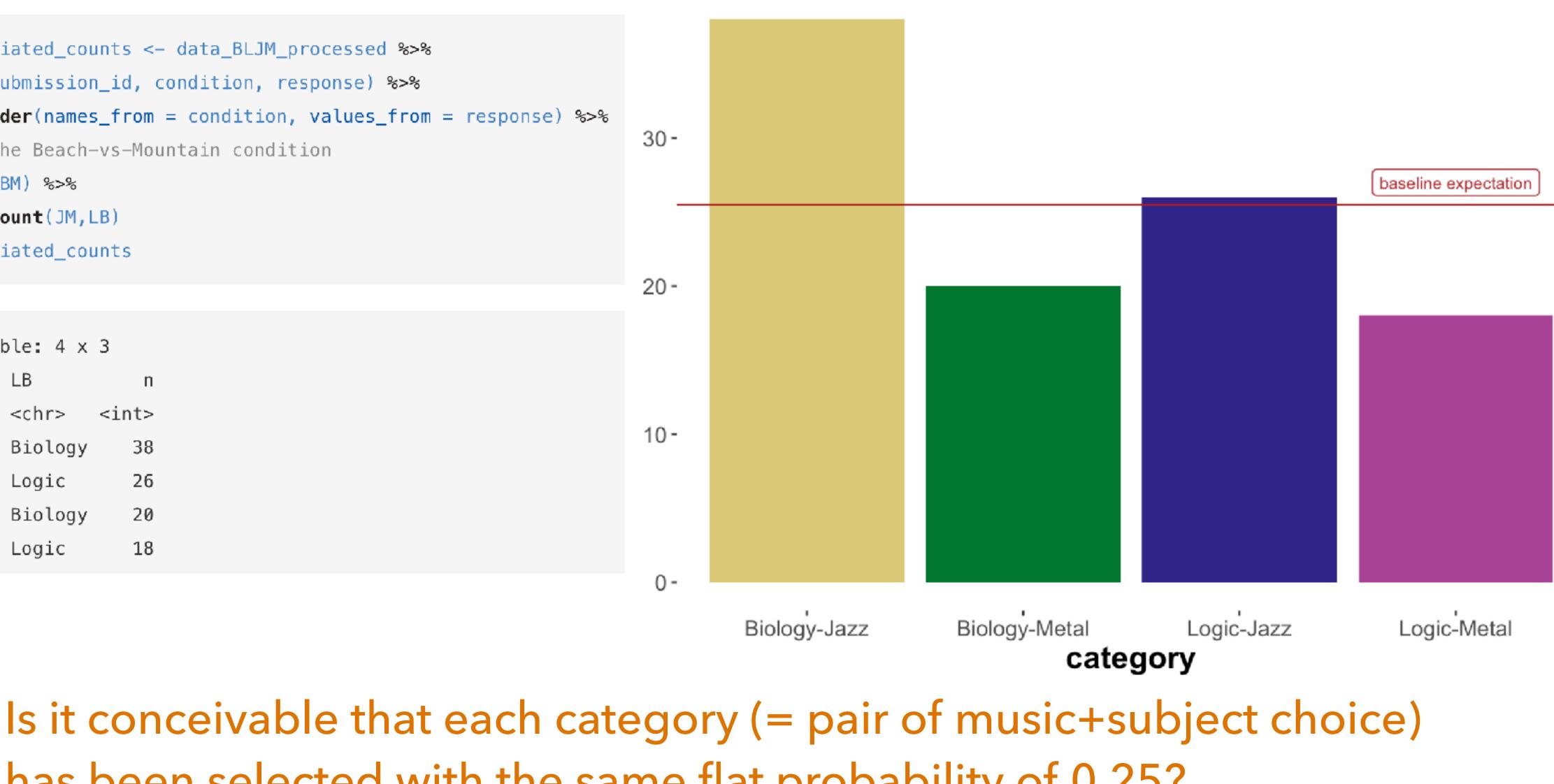
standard normal random variables: X₁,...X_n derived RV: Y = X₁² + ... + X_n² it follows (by construction) that: y ~ χ²-distribution(n)



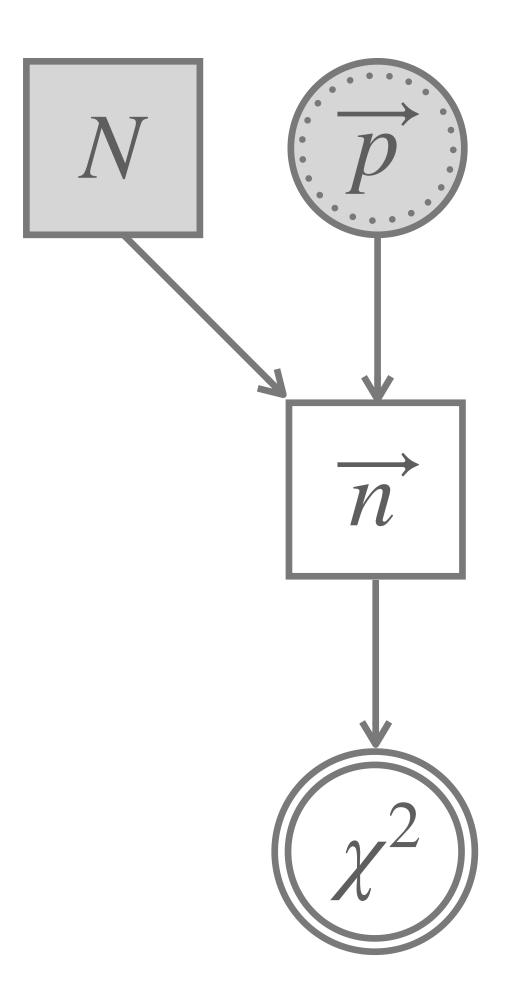

```
BLJM_associated_counts <- data_BLJM_processed %>%
 select(submission_id, condition, response) %>%
 pivot_wider(names_from = condition, values_from = response) %>%
 # drop the Beach-vs-Mountain condition
 select(-BM) %>%
 dplyr::count(JM,LB)
BLJM_associated_counts
```

##	#	A tibb	ole: 4 x	3
##		JM	LB	n
##		<chr></chr>	<chr></chr>	<int></int>
##	1	Jazz	Biology	38
##	2	Jazz	Logic	26
##	3	Metal	Biology	20
##	4	Metal	Logic	18

has been selected with the same flat probability of 0.25?



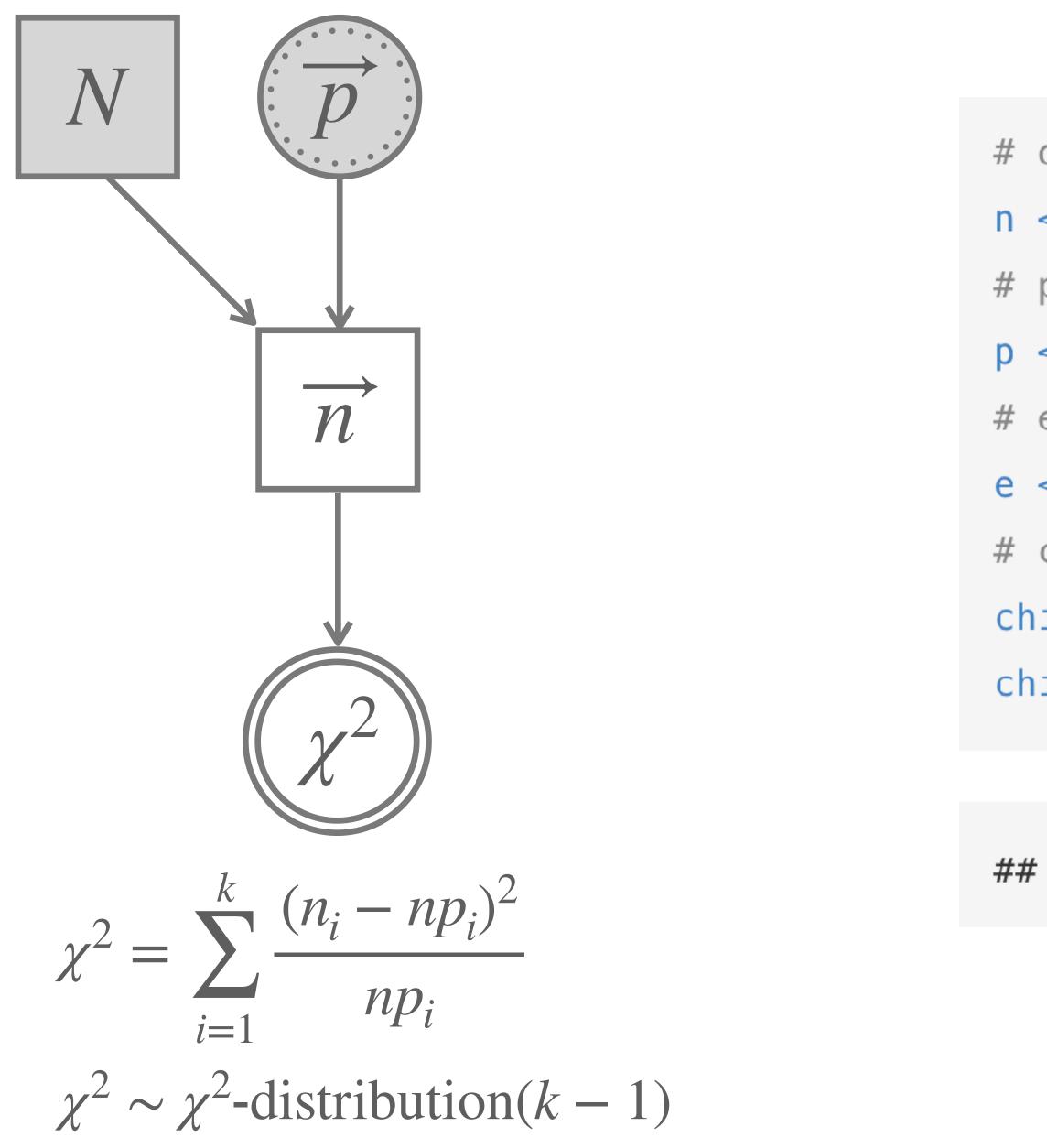
FREQUENTIST MODEL FOR PEARSON'S χ^2 **-TEST** [GOODNESS OF FIT]



$\overrightarrow{n} \sim \text{Multinomial}(\overrightarrow{p}, N)$ $\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}}$

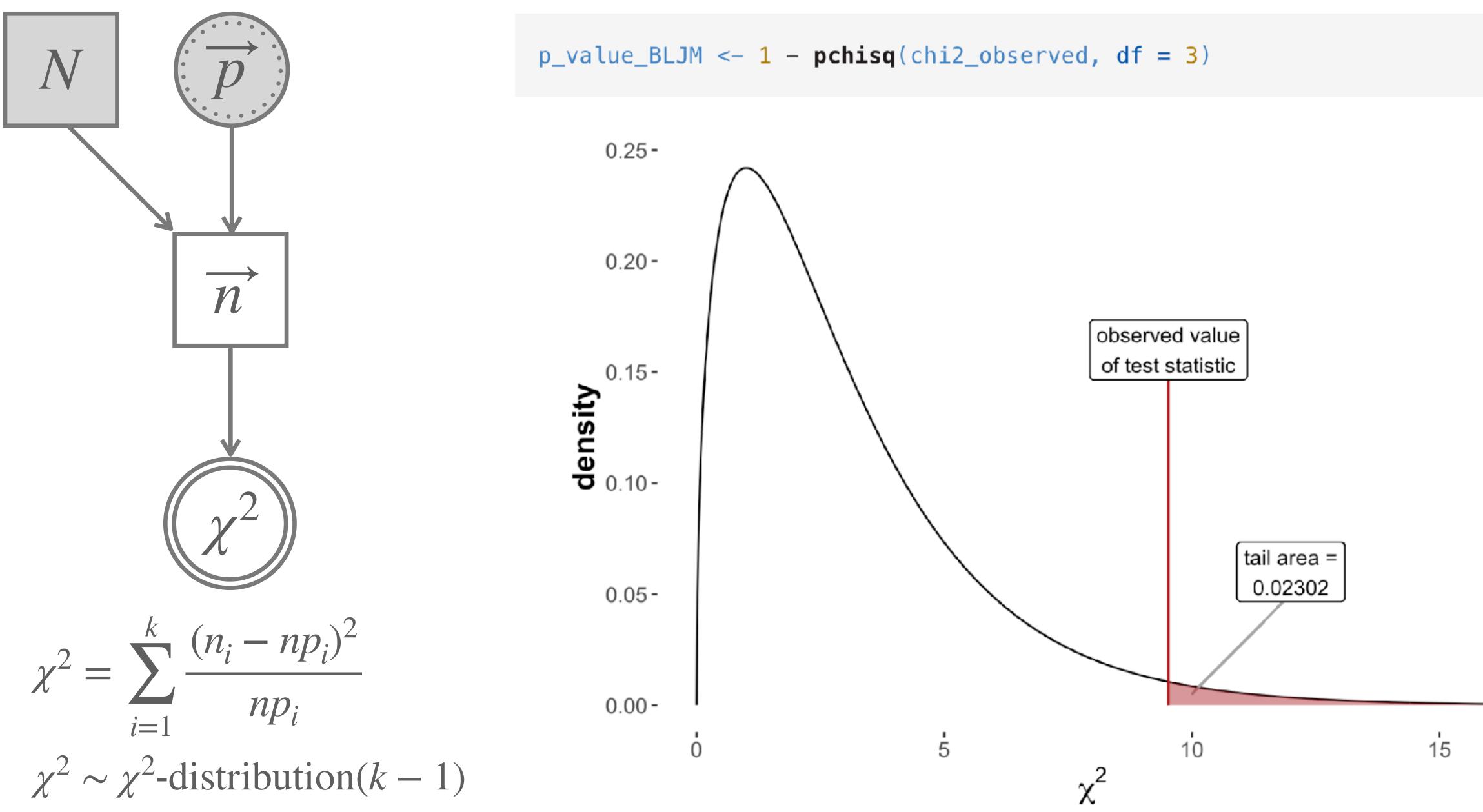
FACT:

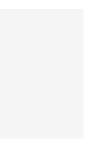
The sampling distribution of χ^2 is approximately: $\chi^2 \sim \chi^2$ -distribution(k-1)

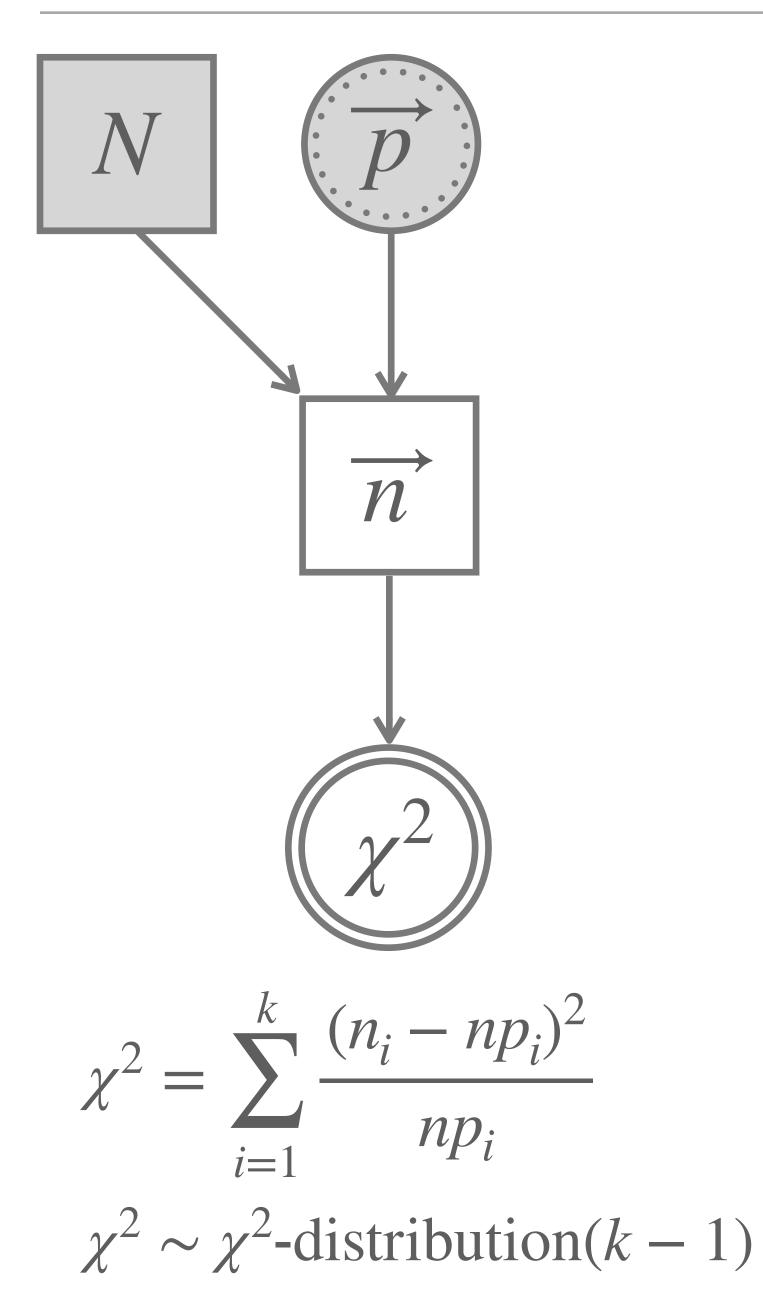



```
# observed counts
n <- counts_BLJM_choice_pairs_vector
# proprortion predicted
p <- rep(1/4,4)
# expected number in each cell
e <- sum(n)*p
# chi-squared for observed data
chi2_observed <- sum((n-e)^2 *1/e)
chi2_observed
```

[1] 9.529412





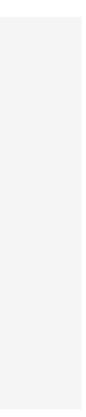


##

counts_BLJM_choice_pairs_vector <- BLJM_associated_counts %>% pull(n) chisq.test(counts_BLJM_choice_pairs_vector)

Chi-squared test for given probabilities

```
## data: counts_BLJM_choice_pairs_vector
## X-squared = 9.5294, df = 3, p-value = 0.02302
```

How to interpret / report the result:

Observed counts deviated significantly from what is expected if each category (here: pair of music+subject choice) was equally likely (χ^2 -test, with $\chi^2pprox 9.53$, df=3 and ppprox 0.023).

What about the lecturer's conjecture that (colorfully speaking) logic + metal = 🥰?