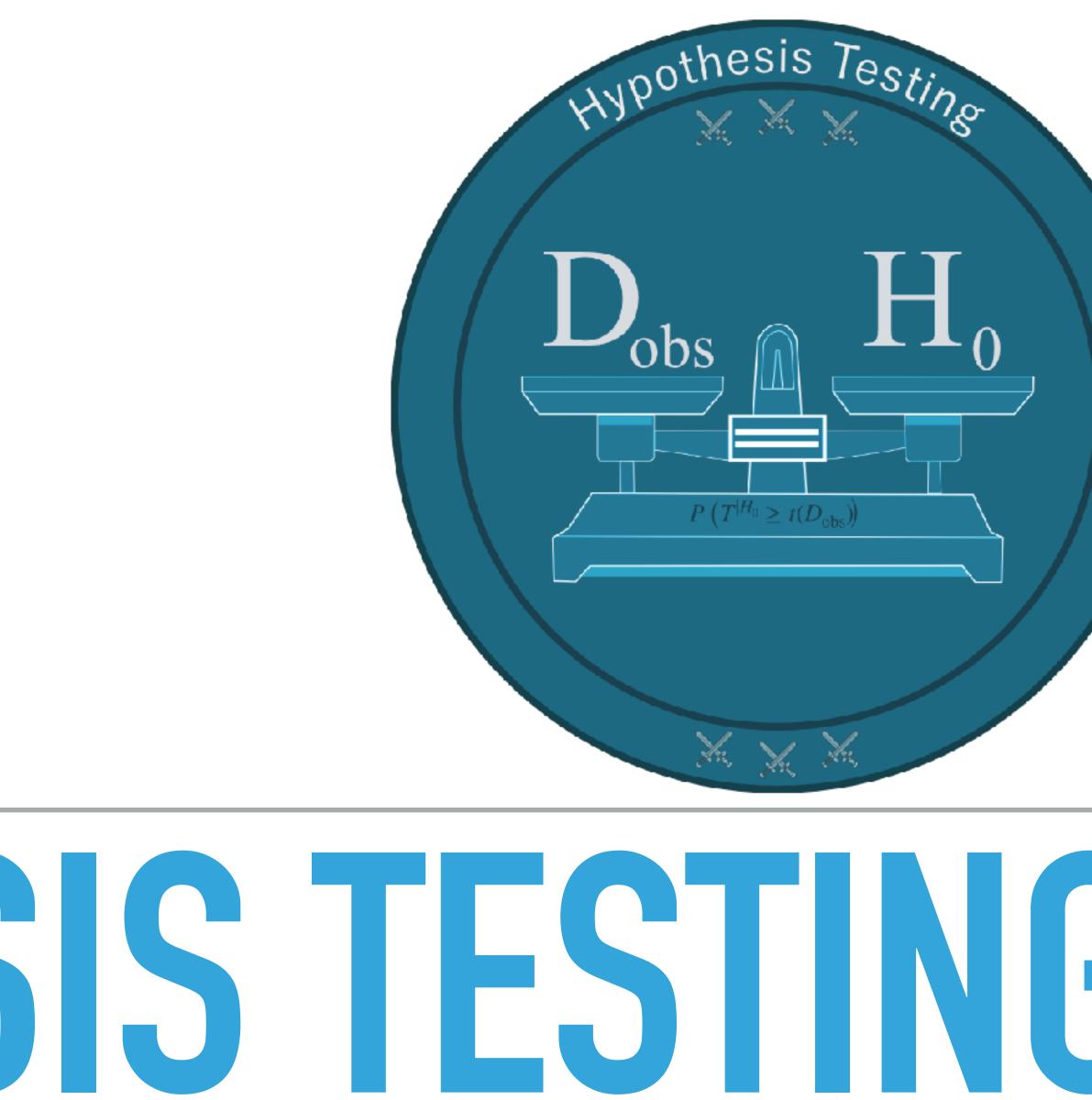
## 

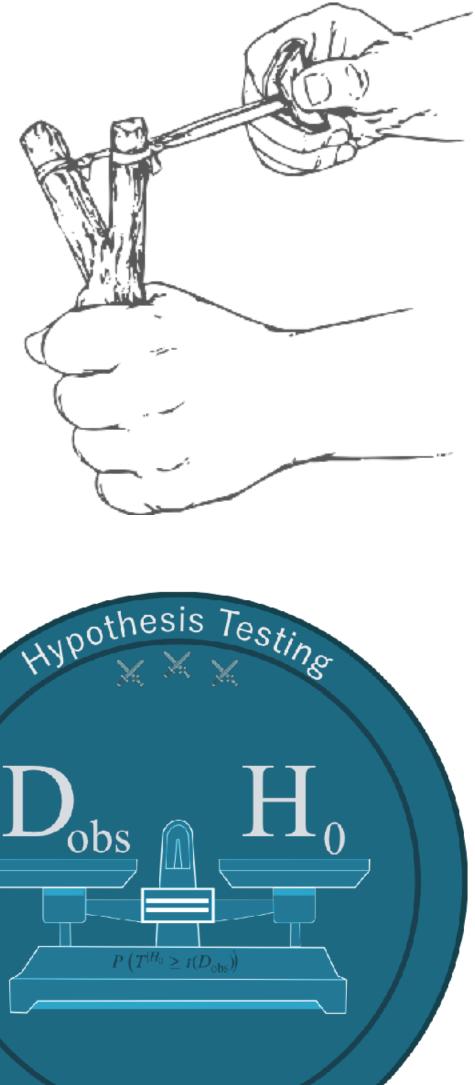
#### **INTRODUCTION TO DATA ANALYSIS**

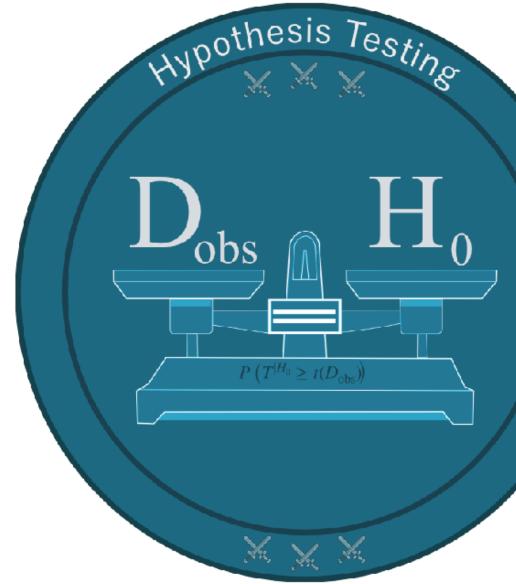




### **LEARNING GOALS**

- get more intimate with p-values
  - distribution under true  $H_0$
  - relation to confidence intervals
- develop a basic sense of how clever math (e.g., Central Limit Theorem) helps approximate sampling distributions > we don't aim for perfect understanding of this math in this course!
- become able to interpret & apply some statistical tests Pearson's  $\chi^2$ -tests
  - > z-test
  - one-sample *t*-test







# **D-Value** revisit

### RECAP

#### **BAYESIAN PARAMETER ESTIMATION**

- model M captures prior beliefs about data-generating process
  - prior over latent parameters
  - likelihood of data
- Bayesian posterior inference using observed data  $D_{obs}$
- compare posterior beliefs to some parameter value of interest

#### FREQUENTIST HYPOTHESIS TESTING

- model M captures a hypothetically assumed data-generating process fix parameter value of interest
  - likelihood of data
- single out some aspect of the data as most important (test statistic)
- Iook at distribution of test statistic given the assumed model (sampling distribution)
- check likelihood of test statistic applied to the observed data  $D_{obs}$

















### **RELATION OF P-VALUES AND CONFIDENCE INTERVALS**

- assumptions:
  - p-value and CI are constructed / approximated in the same way
  - two-sided test with  $H_0$ :  $\theta = \theta_0$  and alternative  $H_a$ :  $\theta \neq \theta_0$
- correspondence result:

## $p(D) < \alpha$ iff $\theta_0 \notin Cl(D)$



## approximating sampling distributions

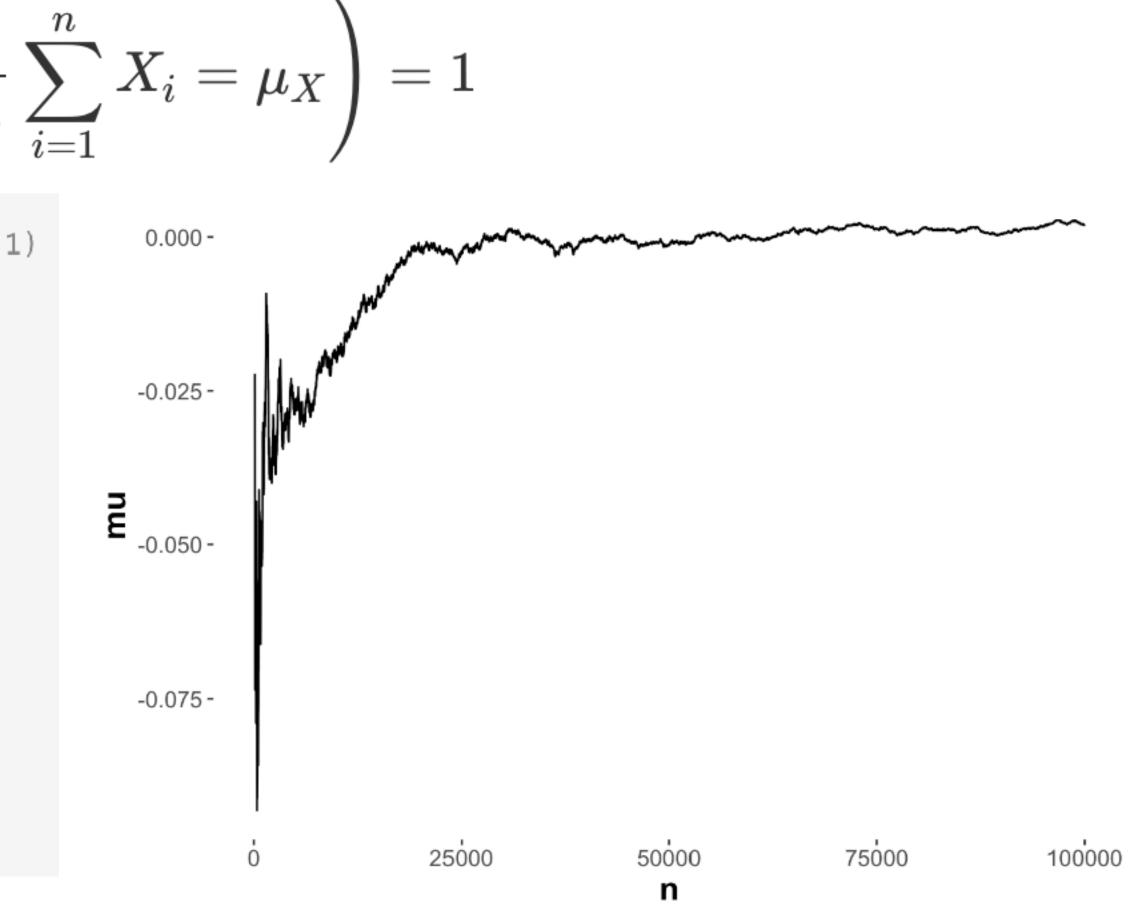
### LAW OF LARGE NUMBERS

# infinity the mean of any tuple of samples, one from each $X_i$ , convergences almost surely to $\mu_X$ :

$$P\left(\lim_{n o\infty}rac{1}{n}
ight.$$

```
# sample from a standard normal distribution (mean = 0, sd = 1)
samples <- rnorm(100000)</pre>
# collect the mean after each 10 samples & plot
tibble(
 n = seq(100, length(samples), by = 10)
  ) %>%
  group_by(n) %>%
  mutate(
  mu = mean(samples[1:n])
  %>%
  ggplot(aes(x = n, y = mu)) +
  geom_line()
```

**Theorem 10.2 (Law of Large Numbers)** Let  $X_1, \ldots, X_n$  be a sequence of n differentiable random variables with equal mean, such that  $\mathbb{E}_{X_i}=\mu_X$  for all  $1\leq i\leq n$ .<sup>60</sup> As the number of samples n goes to





### CENTRAL LIMIT THEOREM

**Theorem 10.3 (Central Limit Theorem)** Let  $X_1, \ldots, X_n$  be a sequence of n differentiable random variables with equal mean  $\mathbb{E}_{X_i}=\mu_X$  and equal finite variance  $\mathrm{Var}(X_i)=\sigma_X^2$  for all  $1 < i < n.^{61}$  The random variable  $S_n$  which captures the distribution of the sample mean for any n is:

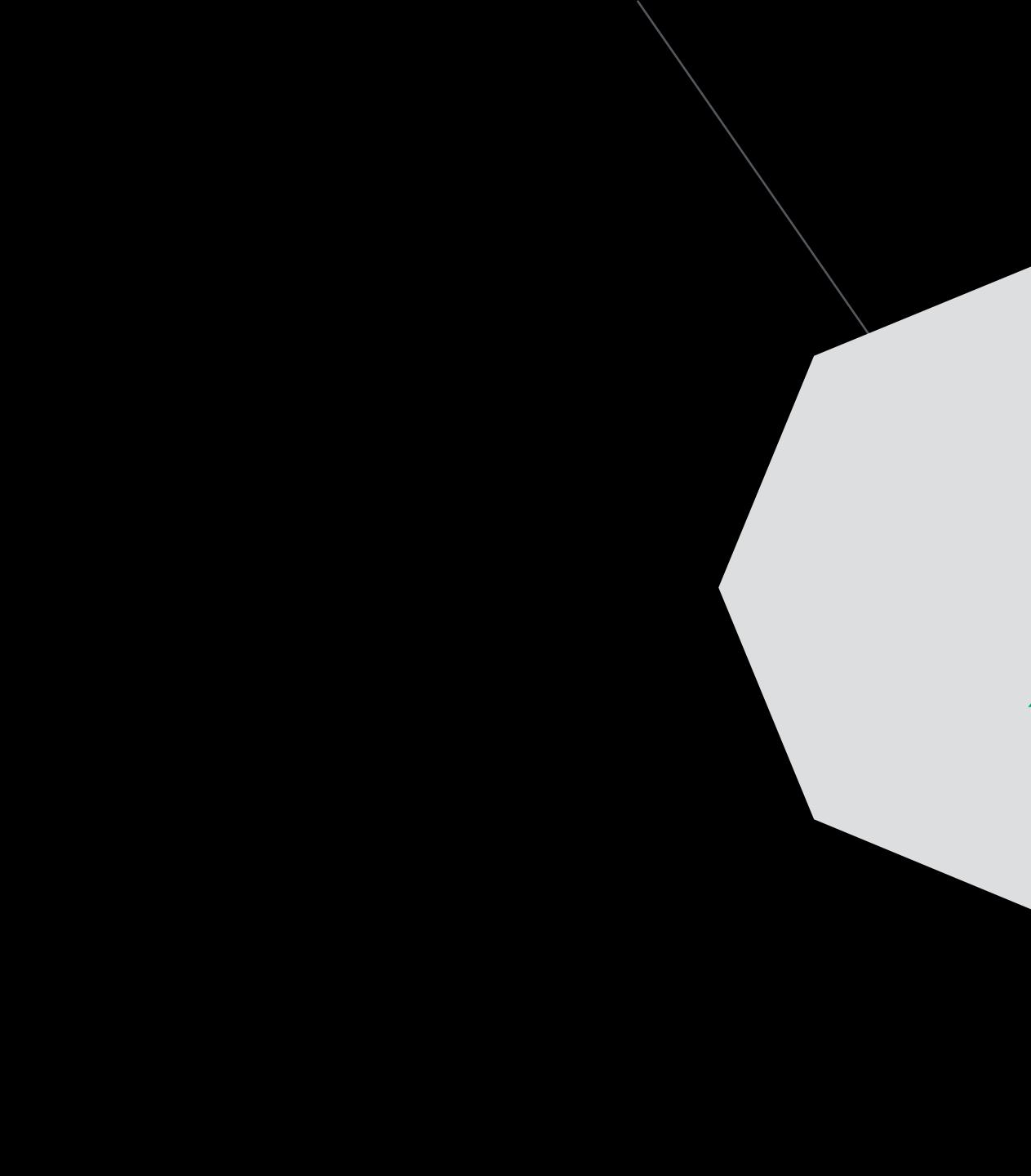
 $S_n =$ 

distribution to a normal distribution with mean 0 and standard deviation  $\sigma_X$ .

CLT gives us information about the distribution of estimated means, e.g., as when we estimate repeatedly in different (hypothetical experiments).

$$=rac{1}{n}\sum_{i=1}^n X_i$$

As the number of samples n goes to infinity the random variable  $\sqrt{n}(S_n - \mu_X)$  converges in

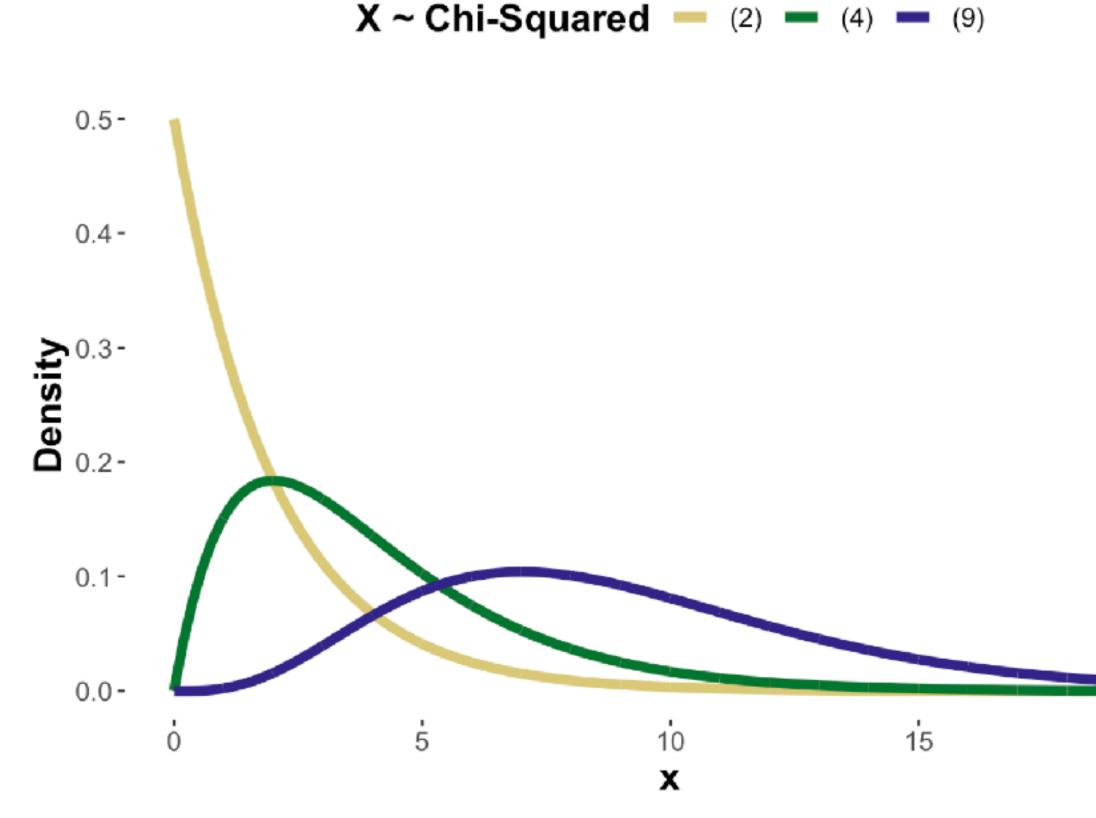


# Pearson's 2-tests

#### **PEARSON** $\chi^2$ -**TESTS**

- tests for categorical data (with more than two categories)
- two flavors:
  - test of goodness of fit
  - test of independence
- sampling distribution is a  $\chi^2$ -distribution

## standard normal random variables: X<sub>1</sub>,...X<sub>n</sub> derived RV: Y = X<sub>1</sub><sup>2</sup> + ... + X<sub>n</sub><sup>2</sup> it follows (by construction) that: y ~ χ<sup>2</sup>-distribution(n)



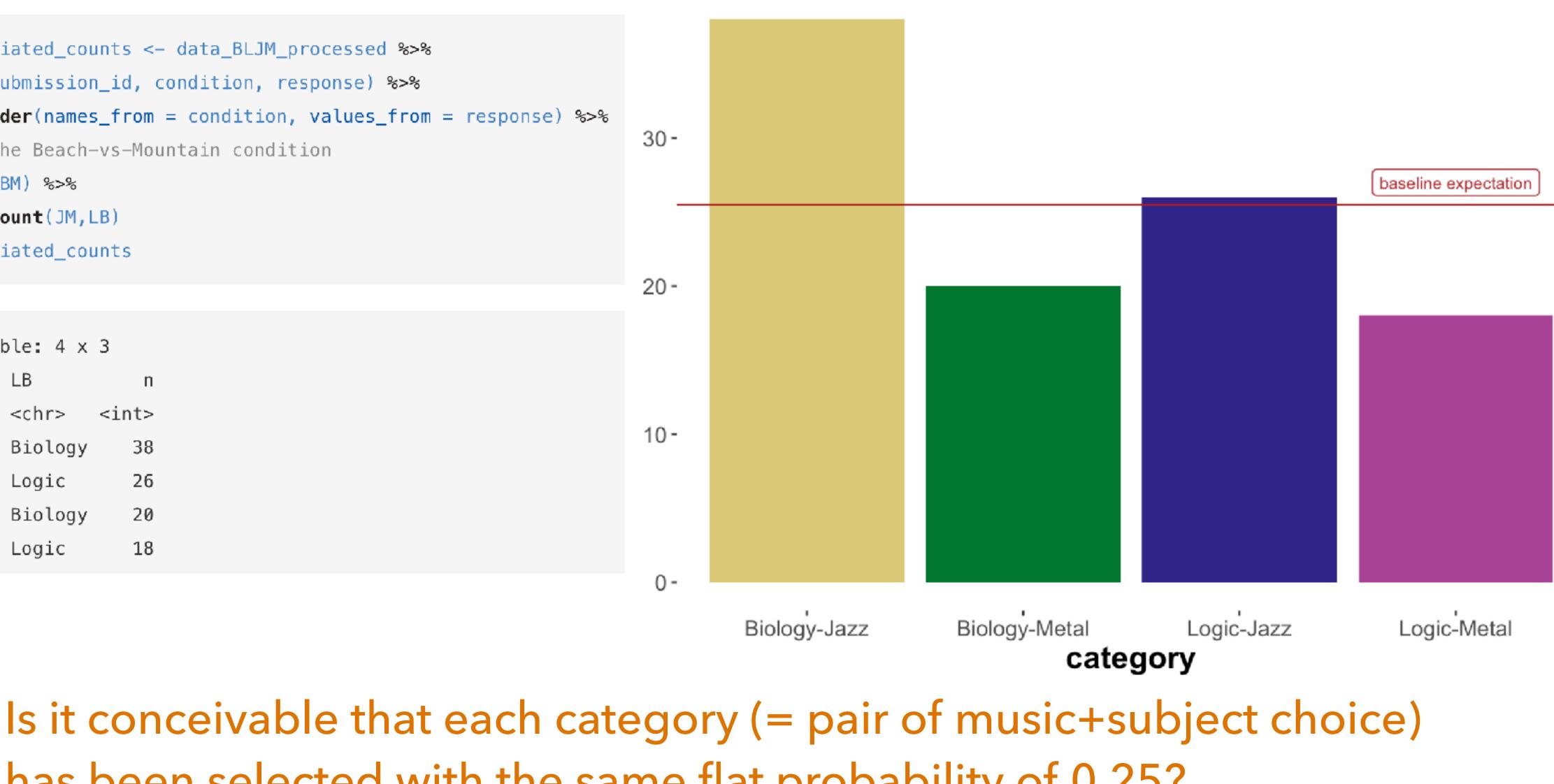


```
BLJM_associated_counts <- data_BLJM_processed %>%
 select(submission_id, condition, response) %>%
 pivot_wider(names_from = condition, values_from = response) %>%
 # drop the Beach-vs-Mountain condition
 select(-BM) %>%
 dplyr::count(JM,LB)
BLJM_associated_counts
```

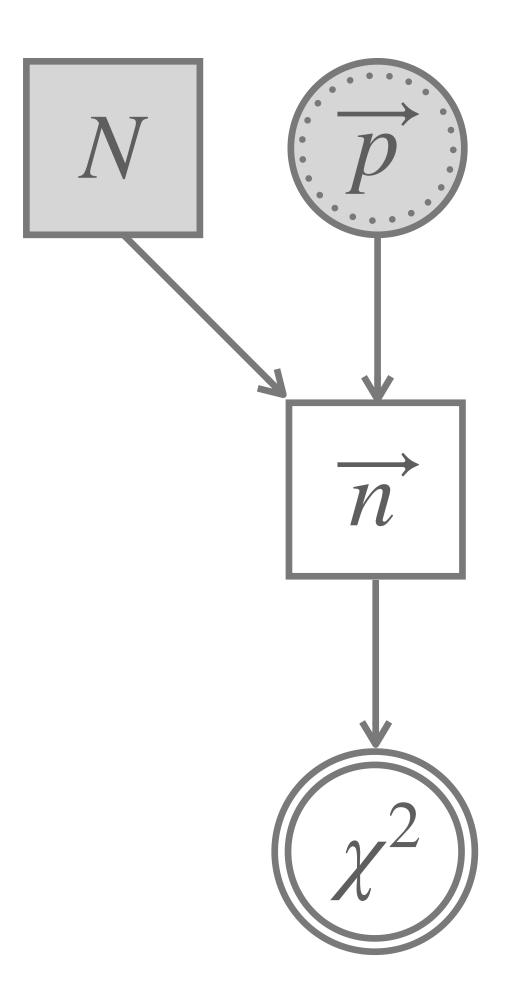
| ## | # | A tibb      | ole: 4 x    | 3           |
|----|---|-------------|-------------|-------------|
| ## |   | JM          | LB          | n           |
| ## |   | <chr></chr> | <chr></chr> | <int></int> |
| ## | 1 | Jazz        | Biology     | 38          |
| ## | 2 | Jazz        | Logic       | 26          |
| ## | 3 | Metal       | Biology     | 20          |
| ## | 4 | Metal       | Logic       | 18          |

# has been selected with the same flat probability of 0.25?





### **FREQUENTIST MODEL FOR PEARSON'S** $\chi^2$ **-TEST** [GOODNESS OF FIT]



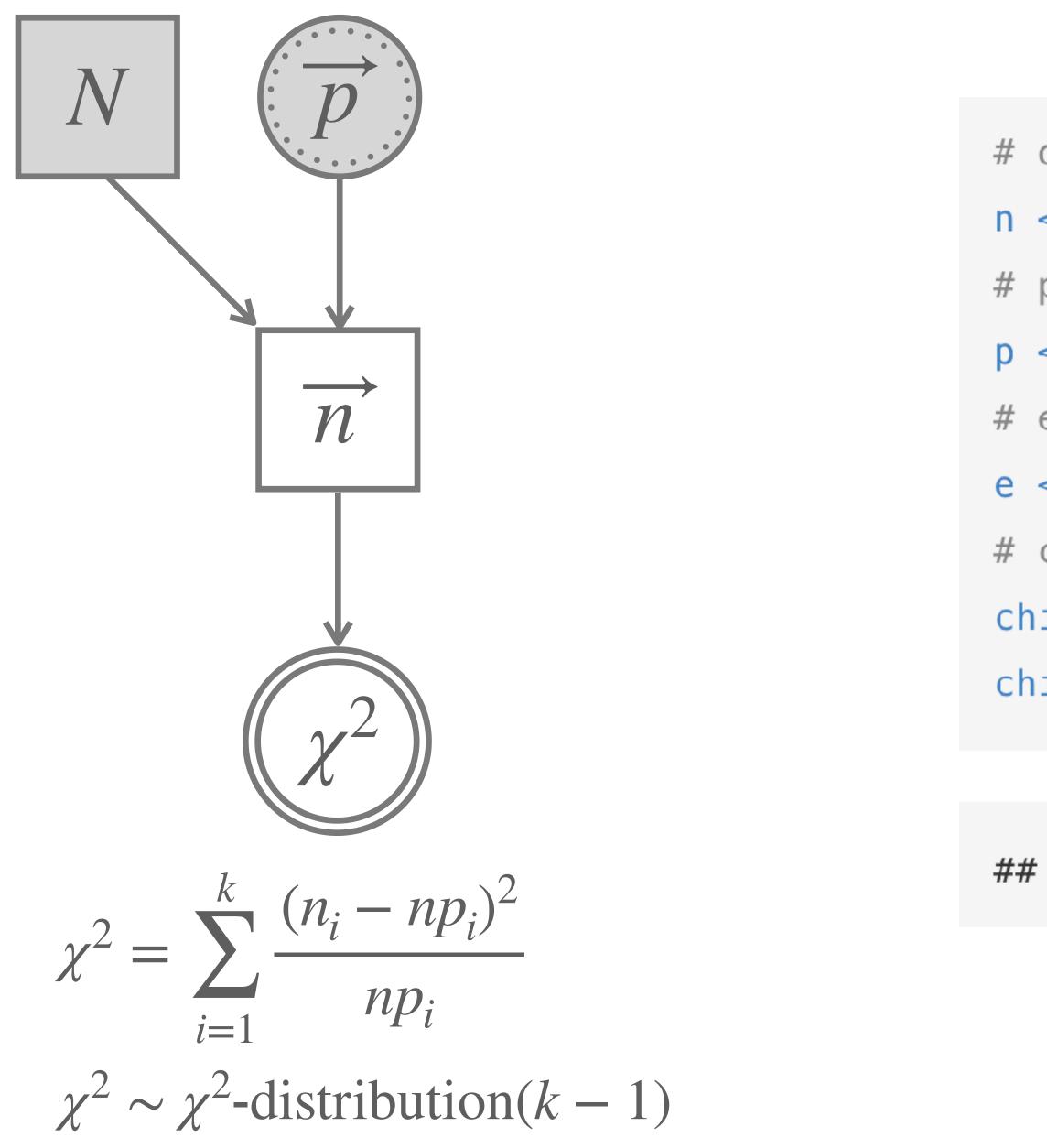


# $\overrightarrow{n} \sim \text{Multinomial}(\overrightarrow{p}, N)$ $\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}}$

#### FACT:

The sampling distribution of  $\chi^2$  is approximately:  $\chi^2 \sim \chi^2$ -distribution(k-1)



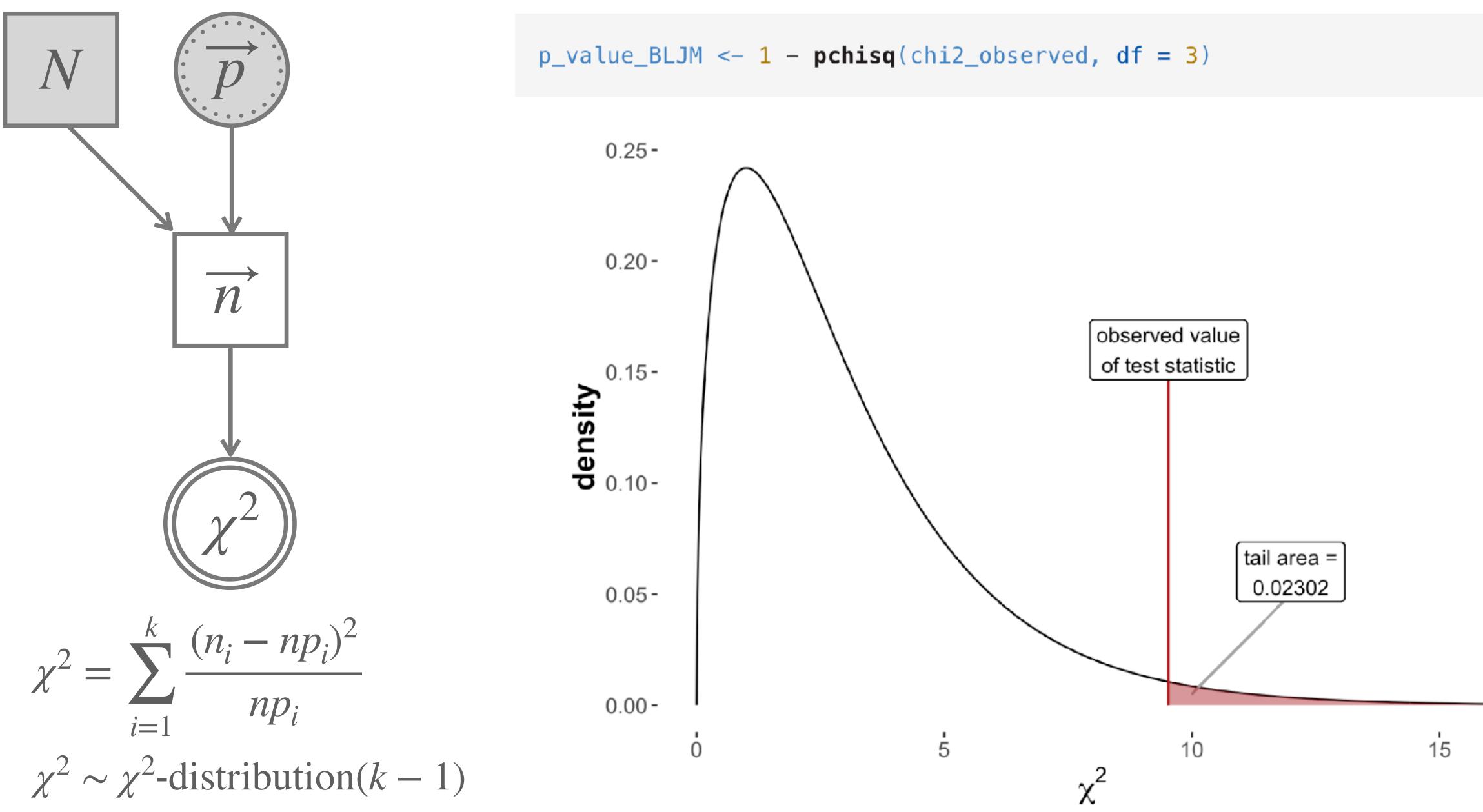




```
# observed counts
n <- counts_BLJM_choice_pairs_vector
# proprortion predicted
p <- rep(1/4,4)
# expected number in each cell
e <- sum(n)*p
# chi-squared for observed data
chi2_observed <- sum((n-e)^2 *1/e)
chi2_observed
```

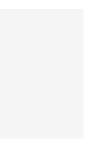
## [1] 9.529412

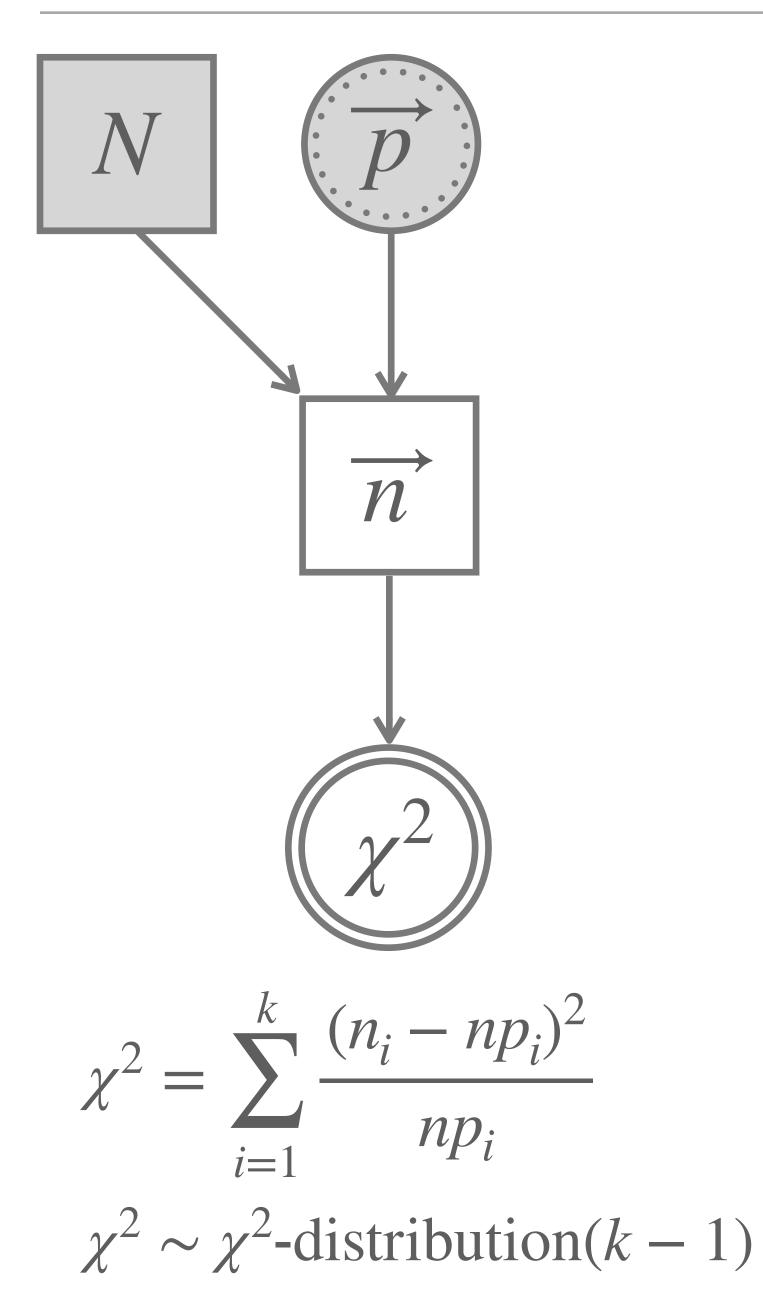












## ## ##

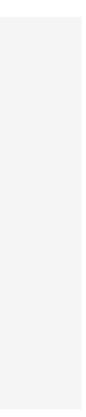


counts\_BLJM\_choice\_pairs\_vector <- BLJM\_associated\_counts %>% pull(n) chisq.test(counts\_BLJM\_choice\_pairs\_vector)

Chi-squared test for given probabilities

```
## data: counts_BLJM_choice_pairs_vector
## X-squared = 9.5294, df = 3, p-value = 0.02302
```





#### How to interpret / report the result:

Observed counts deviated significantly from what is expected if each category (here: pair of music+subject choice) was equally likely ( $\chi^2$ -test, with  $\chi^2pprox 9.53$ , df=3 and ppprox 0.023).



#### What about the lecturer's conjecture that (colorfully speaking) logic + metal = 🥰?