
HYPOTHESIS TESTING
INTRODUCTION TO DATA ANALYSIS

PART II



LEARNING GOALS

▸ get more intimate with p-values 
▸ distribution under true  
▸ relation to confidence intervals 

▸ develop a basic sense of how clever math (e.g., Central 
Limit Theorem) helps approximate sampling distributions 
▸ we don’t aim for perfect understanding of this math in this course! 

▸ become able to interpret & apply some statistical tests 
▸ Pearson’s -tests 
▸ z-test 
▸ one-sample t-test
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RECAP

▸ model  captures prior beliefs 
about data-generating process 
▸ prior over latent parameters 
▸ likelihood of data 

▸ Bayesian posterior inference using 
observed data  

▸ compare posterior beliefs to some 
parameter value of interest

M

Dobs

BAYESIAN PARAMETER ESTIMATION FREQUENTIST HYPOTHESIS TESTING

▸ model  captures a hypothetically 
assumed data-generating process 
▸ fix parameter value of interest 
▸ likelihood of data 

▸ single out some aspect of the data 
as most important (test statistic) 

▸ look at distribution of test statistic 
given the assumed model 
(sampling distribution) 

▸ check likelihood of test statistic 
applied to the observed data 
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P-VALUE

p(Dobs) = P(T|H0 ⪰H0,a t(Dobs))



RELATION OF P-VALUES AND CONFIDENCE INTERVALS

▸ assumptions: 
▸  p-value and CI are constructed / approximated in the same way 
▸ two-sided test with  and alternative  

▸ correspondence result: 

H0 : θ = θ0 Ha : θ ≠ θ0

p(D) < α iff θ0 ∉ CI(D)
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LAW OF LARGE NUMBERS



CENTRAL LIMIT THEOREM

CLT gives us information about the distribution of estimated means, e.g., as 
when we estimate repeatedly in different (hypothetical experiments).
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PEARSON -TESTSχ2

▸ tests for categorical data (with more than two categories) 
▸ two flavors: 
▸ test of goodness of fit 
▸ test of independence 

▸ sampling distribution is a -distribution χ2



-DISTRIBUTIONχ2

▸ standard normal random variables: 
  

▸ derived RV:  
 

▸ it follows (by construction) that: 
 

X1, …Xn

Y = X2
1 + … + X2

n

y ∼ χ2-distribution(n)



PEARSON’S -TEST [GOODNESS OF FIT]χ2

Is it conceivable that each category (= pair of music+subject choice) 
has been selected with the same flat probability of 0.25?



FREQUENTIST MODEL FOR PEARSON’S -TEST [GOODNESS OF FIT]χ2

⃗n ∼ Multinomial( ⃗p , N)

FACT: 
The sampling distribution of  is 
approximately:

χ2

χ2 ∼ χ2-distribution(k − 1)
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PEARSON’S -TEST [GOODNESS OF FIT]χ2

How to interpret / report the result:

What about the lecturer’s conjecture that 
(colorfully speaking) logic + metal = 🥰?


