HYPOTHESIS

INTRODUCTION TO DATA ANALYSIS

PART I

RECAP & OUTLOOK

BAYESIAN PARAMETER ESTIMATION

- model M captures prior beliefs about data-generating process
 - prior over latent parameters
 - likelihood of data
- Bayesian posterior inference using observed data D_{obs}
- compare posterior beliefs to some parameter value of interest

FREQUENTIST HYPOTHESIS TESTING

- model M captures a hypothetically assumed data-generating process fix parameter value of interest
 - likelihood of data
- single out some aspect of the data as most important (test statistic)
- Iook at distribution of test statistic given the assumed model (sampling distribution)
- check likelihood of test statistic applied to the observed data D_{obs}

CAVFAT

FREQUENTIST HYPOTHESIS TESTING

- there are at least three flavors of frequentist hypothesis testing
 - **Fisher**
 - Neyman-Pearson
 - modern hybrid NHST [null-hypothesis significance testing]
- not every text book is clear on these differences and/or which flavor it endorses
- there is also no unanimity of practice between or within research fields

LEARNING GOALS

- understand basic idea of frequentist hypothesis testing
- understand what a p-value is
 - definition, one- vs two-sided
 - test statistic & sampling distribution
 - relation to confidence intervals
 - \blacktriangleright significance levels & α -error

- research hypothesis: theoretically impl research
 - e.g., truth-judgements of sentences with presupposition failure at chance level? (King of France)
 - e.g., faster reactions in *reaction time* trials than in *go/No-go* trials? (Mental Chronometry)
- null hypothesis: specific assumption made for purposes of analysis
 - fix parameter value in a data-generating model for technical reasons
 - analogy: useful assumption in mathematical proof (e.g., in reductio ad absurdum)
- alternative hypothesis: the antagonist of the null hypothesis, specified to relate the null hypothesis to the research hypothesis

research hypothesis: theoretically implied answer to a main question of interest for

P-VALUE

Definition *p*-value. The *p*-value associated with observed data D_{obs} gives the probability, derived from the assumption that H_0 is true, of observing an outcome for the chosen test statistic that is at least as extreme evidence against H_0 as the observed outcome. Formally, the *p*-value of observed data D_{obs} is:

 $p(D_{\rm obs}) =$

where $t: \mathcal{D} \to \mathbb{R}$ is a **test statistic** which picks out a relevant summary statistic of each potential data observation, $T^{|H_0}$ is the **sampling distribution**, namely the random variable derived from test statistic t and the assumption that H_0 is true, and $\succeq^{H_{0,a}}$ is a linear order on the image of t such that $t(D_1) \succeq^{H_{0,a}} t(D_2)$ expresses that test value $t(D_1)$ is at least as extreme evidence against H_0 as test value $t(D_2)$.¹

$$P(T^{|H_0} \succeq^{H_{0,a}} t(D_{\mathrm{obs}}))$$

Binomial Noce

BAYESIAN BINOMIAL MODEL (AS ORIGINALLY INTRODUCED)

$\theta \sim \text{Beta}(...)$

$k \sim \text{Binomial}(\theta, N)$

BAYESIAN BINOMIAL MODEL (EXTENDED)

 $\theta \sim \text{Beta}(...)$

$x_i \sim \text{Bernoulli}(\theta_0)$

FREQUENTIST BINOMIAL MODEL


```
x_i \sim \text{Bernoulli}(\theta_0)
```

[likelihood of "raw" data]

[test statistic (derived from "raw" data)]

The sampling distribution of k is:

$k \sim \text{Binomial}(\theta_0, N)$

FREQUENTIST BINOMIAL MODEL

- > null-hypothesis: $\theta = \theta_0$
- **test statistic:** k derived from "raw" data \overrightarrow{x}
 - the most important (numerical) aspect of the data for the current testing purposes
- sampling distribution: likelihood of observing a particular value of k in this model
- notice: the observed data D_{obs} has not yet made any appearance
- - remark: sometimes summary statistics of D_{obs} other than the test statistic might be used in the model

FREQUENTIST BINOMIAL MODEL

sampling distribution: random variable $T^{|H_0|}$ $P(T^{|H_0} = k) = \text{Binomial}(k, \theta_0, N)$

likelihood of data: random variable $\mathscr{D}^{|H_0}$ $P(\mathcal{D}^{|H_0} = \langle x_1, \dots, x_N \rangle) = \mathbf{F} \text{Bernoulli}(x_i, \theta_0)$ i=1

Binomial D-values

• 24/7 example: N = 24 and k = 7

•
$$t(D_{obs}) = 7$$

- $P(T^{|H_0} = k) = \text{Binomial}(k, \theta_0, N)$
- p-value definition:

$$p(D_{obs}) = P(T^{|I})$$

we know

What counts as "more extreme evidence against the null hypothesis" is a context-sensitive notion that depends on the null-hypothesis *and* the alternative hypothesis because only when put together do null- and alternative hypothesis address the research question in the background.

- compare two research questions
 - 1. Is the coin fair?

•
$$H_0: \theta = 0.5$$

$$H_a: \theta \neq 0.5$$

2. Is the coin biased towards heads?

•
$$H_0: \theta = 0.5$$

$$H_a: \theta < 0.5$$

- we still use a point-valued nullhypothesis for technical reasons
- the alternative hypothesis is important to fix the meaning of $\geq^{H_{0,a}}$

- Case 1: Is the coin fair?
 - $H_0: \theta = 0.5$
 - $H_a: \theta \neq 0.5$
- which values of k are more extreme evidence against H₀?

0.15-0.5) **54'**θ Binomial(k | n = 0.02 -

0.00 -

- Case 1: Is the coin fair?
 - $H_0: \theta = 0.5$
 - $\bullet \quad H_a: \ \theta \neq 0.5$
- which values of k are more extreme evidence against H₀?
 - anything that's even less likely to occur

0.15-0.5) 24,0 0.10-Ш П Binomial(k 0.05-

0.00 -

$$p(k) = \sum_{k'=0}^{N} [ext{Binomial}(k', N, heta_0) <= ext{Binom}$$

```
# exact p-value for k=7 with N=24 and null-hypothesis theta = 0.5
k_obs <- 7
N <- 24
theta_0 <- 0.5
tibble( lh = dbinom(0:N, N, theta_0) ) %>%
filter( lh <= dbinom(k_obs, N, theta_0) ) %>%
pull(lh) %>% sum %>% round(5)
```

[1] 0.06391

$\operatorname{nial}(k, N, \theta_0)] \operatorname{Binomial}(k', N, \theta_0)$

- Case 2: Is the coin
 biased towards heads?
 0.15-
 - $H_0: \theta = 0.5$
 - $H_a: \theta < 0.5$
- which values of k are more extreme evidence against H₀?

- Case 2: Is the coin biased towards heads? 0.15-
 - $H_0: \theta = 0.5$
 - $H_a: \theta < 0.5$
- which values of k are more extreme evidence against H_0 ?
 - anything even more in favor of H_a

Ē

0.00 -

- ##

.nom.test(
x = 7,	# observed successes
n = 24,	<pre># total nr. observations</pre>
p = 0.5,	# null hypothesis
alternativ	e = "less" # the alternative to compare against is theta <

```
Exact binomial test
## data: 7 and 24
## number of successes = 7, number of trials = 24, p-value = 0.03196
## alternative hypothesis: true probability of success is less than 0.5
## 95 percent confidence interval:
   0.0000000 0.4787279
##
## sample estimates:
## probability of success
                0.2916667
```


D-Value revisit

P-VALUE

Definition *p*-value. The *p*-value associated with observed data D_{obs} gives the probability, derived from the assumption that H_0 is true, of observing an outcome for the chosen test statistic that is at least as extreme evidence against H_0 as the observed outcome. Formally, the *p*-value of observed data D_{obs} is:

 $p(D_{\rm obs}) =$

where $t: \mathcal{D} \to \mathbb{R}$ is a **test statistic** which picks out a relevant summary statistic of each potential data observation, $T^{|H_0}$ is the **sampling distribution**, namely the random variable derived from test statistic t and the assumption that H_0 is true, and $\succeq^{H_{0,a}}$ is a linear order on the image of t such that $t(D_1) \succeq^{H_{0,a}} t(D_2)$ expresses that test value $t(D_1)$ is at least as extreme evidence against H_0 as test value $t(D_2)$.¹

$$P(T^{|H_0} \succeq^{H_{0,a}} t(D_{\mathrm{obs}}))$$

significance and *Q*-errors

SIGNIFICANCE LEVELS

- standardly we fix a significance level α before the test
- common values of α are:
 - $\alpha = 0.05$
 - $\alpha = 0.01$
 - $\alpha = 0.001$
- If the p-value for the observed data passes the pre-established threshold of significance, we say that the test result was significant
- a significant test result is conventionally regarded as "strong enough" evidence against the null-hypothesis, so that we can reject the null hypothesis as a viable explanation of the data
- non-significant results are interpreted differently in different approaches (more later)

α -ERROR

- an α -error (aka type-I error) occurs when we reject a true null hypothesis
- more than α
- long-term error control on research results

by definition this type of error occurs, in the long run, with a proportion of no

It is in this way that frequentist statistic is subscribed and cherishes a regime of

Bayesian approaches (usually) are not concerned with long-term error control