INTRODUCTION TO DATA ANALYSIS

HYPOTHESIS TESTING

PART |



RECAP & QUTLOOK

BAYESIAN PARAMETER ESTIMATION

» model M captures prior beliefs

about data-generating process
» prior over latent parameters
» likelihood of data

» Bayesian posterior inference using
observed data D,

» compare posterior beliefs to some
parameter value of interest

FREQUENTIST HYPOTHESIS TESTING

4

model M captures a hypothetically

assumed data-generating process
» fix parameter value of interest
» likelihood of data

single out some aspect of the data
as most important (test statistic)

look at distribution of test statistic
given the assumed model
(sampling distribution)

check likelihood of test statistic

applied to the observed data D,



CAVEAT

FREQUENTIST HYPOTHESIS TESTING
» there are at least three flavors of frequentist

hypothesis testing

» Fisher
» Neyman-Pearson
» modern hybrid NHST

[null-hypothesis significance testing]

» not every text book is clear on these differences
and/or which flavor it endorses

» there is also no unanimity of practice between or
within research fields



LEARNING GOALS

» understand basic idea of frequentist hypothesis testing
» understand what a p-value is

» definition, one- vs two-sided

» test statistic & sampling distribution

» relation to confidence intervals

» significance levels & a-error







PRELIMINARIES

» research hypothesis: theoretically implied answer to a main question of interest for
research
» e.g., truth-judgements of sentences with presupposition failure at chance level?
(King of France)
» e.g., faster reactions in reaction time trials than in go/No-go trials? (Mental
Chronometry)

» null hypothesis: specific assumption made for purposes of analysis
» fix parameter value in a data-generating model for technical reasons
» analogy: useful assumption in mathematical proof (e.g., in reductio ad absurdum)

» alternative hypothesis: the antagonist of the null hypothesis, specified to relate the
null hypothesis to the research hypothesis



P-VALUE







BAYESIAN BINOMIAL MODEL (as oRIGINALLY INTRODUCED)

6 ~ Beta(...)

k ~ Binomial(@, N)




BAYESIAN BINOMIAL MODEL (extennen)

6 ~ Beta(...)

x; ~ Bernoulli(6,)

N

k=2xi

=1



FREQUENTIST BINOMIAL MODEL

[doted line = “working assumption”]

Xi ~ Bern()ulli(eo) [likelihood of “raw” datal

k — E Xl- [test statistic (derived from “raw” data)]
=1

a )

FACT:
The sampling distribution of & is:

k ~ Binomial(6,, N)




FREQUENTIST BINOMIAL MODEL

» null-hypothesis: 60 = 6,

—

» test statistic: k derived from “raw” data x

» the most important (numerical) aspect of the
data for the current testing purposes

» sampling distribution: likelihood of observing a
particular value of k£ in this model

» notice: the observed data D_,,. has not yet made
any appearance

» remark: sometimes summary statistics of D_; . other than the
test statistic might be used in the model




FREQUENTIST BINOMIAL MODEL

» likelihood of data: random variable @

N
P(@"o = (x,, ....xy)) = | | Bernoulli(x; &)
=1

» sampling distribution: random variable T

P(T" = k) = Binomial(k, 6, N)







BINOMIAL TEST

» 24/7 example: N =24 and k=7
g t(Dods) =/
» P(T'"0 = k) = Binomial(k, 6,, N)

» p-value definition:

p(Dobs) = L( T‘ n

we know this we know this

What counts as “more extreme evidence against the null hypothesis” is a
context-sensitive notion that depends on the null-hypothesis and the

alternative hypothesis because only when put together do null- and
alternative hypothesis address the research question in the background.




BINOMIAL TEST

» compare two research questions » we still use a point-valued null-

1 1s the coin fair? hypothesis for technical reasons

» H : 0 #0.5

» the alternative hypothesis is
important to fix the meaning of >".

2. |Is the coin biased towards heads?
» H,: 0 <0.5



BINOMIAL TEST

» Case 1: Isthe coin fair?

0.15-
) HO: 9 — 05
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» H, : 0 #0.5 °
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BINOMIAL TEST

» Case 1: Is the coin fair?
) HO: 9 — 05
» H,: 0#0.5

» which values of k are
more extreme evidence
against H,?

» anything that's even
less likely to occur

0.15-

.
EN
o

Binomial(k | n = 24,0 = 0.5)

0.00-

0.05-

p(k=7) = 0.06391
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BINOMIAL TEST

0.15- # exact p-value for k=7 with N=24 and null-hypothesis theta = 0.5
) k obs <— 7
o
I N <— 24
Sl
3, 019 theta @ <- 0.5
I
c tibble( 1h = dbinom(0:N, N, theta 0) ) %>%
= filter( 1h <= dbinom(k obs, N, theta 0) ) %>%
O
£ 005 pull(lh) %>% sum %>% round(5)
-
m p(k=7) = 0.06391

0.00- —_— I I 1._ ## [1] 0.06391

0 5 10 15 20 25
test statistic k
N

p(k) = Z[Binomial(k’, N,6y) <= Binomial(k, N, 6y)] Binomial(k', N, 6y)
K'=0



BINOMIAL TEST

» Case 2: Isthe coin

biased towards heads? 0.15-
. ) — )
» Hy: 0 =0.5 -
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BINOMIAL TEST

» Case 2: Is the coin
biased towards heads?

) HO: 9=05
» H, :0<0.5

» which values of k are
more extreme evidence

against H,?

» anything even more in
favor of H,

0.15-

o
N
-

Binomial(k | n =24,06 = 0.5)

0.00-

0.05-

| p(k=7) = 0.03196
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BINOMIAL TEST

Binomial(k | n =24,6 = 0.5)

0.15-

0.10-

0.05-

0.00-

o(k=7) = 0.03196
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nom.test(
X =7, # observed successes
n = 24, # total nr. observations

p = 0.5, # null hypothesis

alternative = "less" # the alternative to compare against is theta < 0.5

Exact binomial test

data: 7 and 24

number of successes 7, number of trials = 24, p-value = 0.03196
alternative hypothesis: true probability of success is less than 0.5
95 percent confidence interval:

0.0000000 0.4787279

sample estimates:

probability of success

0.2916667






P-VALUE







SIGNIFICANCE LEVELS

» standardly we fix a significance level a before the test

» common values of a are:

» a = 0.05
» a = 0.01
» a = 0.001

» if the p-value for the observed data passes the pre-established threshold of
significance, we say that the test result was significant

» a significant test result is conventionally regarded as “strong enough” evidence
against the null-hypothesis, so that we can reject the null hypothesis as a viable
explanation of the data

» non-significant results are interpreted differently in different approaches (more
later)



o-ERROR

» an a-error (aka type-l error) occurs when we reject a true null hypothesis

» by definition this type of error occurs, in the long run, with a proportion of no
more than o

» itis in this way that frequentist statistic is subscribed and cherishes a regime of
long-term error control on research results

» Bayesian approaches (usually) are not concerned with long-term error control



