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LEARNING GOALS

▸ understand Bayes rule for parameter estimation 

▸ (conjugate) priors, likelihood 

▸ point-valued  & interval-based estimators 

▸   frequentist: MLE, confidence intervals 

▸   Bayes: mean of posterior, credible intervals 

▸ implement probabilistic models in greta 

▸ compute with posterior samples
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ESTIMATES

▸ point-valued: single “best” values 

▸ interval-range: “good” values (around “best” value)



model-based 
hypothesis 
testing
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MENTAL CHRONOMETRY

▸ N=50 participants recruited via Prolific 

▸ three blocks / conditions 

▸ reaction press button when a shape appears 

▸ go/no-go press button for shape 1; don’t 
press for shape 2 

▸ discrimination press one button for shape 1, 
another for shape 2
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MENTAL CHRONOMETRY
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T-TEST MODEL [TWO UNCOUPLED MEANS]

μ1 ∼ Normal(…)
yi ∼ Normal(μgi

, σ)yi

σ μo μ1gi

observ. i

σ ∼ Trunc-Norm(…, lower = 0)
μ0 ∼ Normal(…)
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T-TEST MODEL [WITH DIFFERENCE BETWEEN MEANS]

δ ∼ Normal(0,…)

yi ∼ {Normal(μ, σ) if gi = 0
Normal(μ + δ, σ) if gi = 1

yi

σ μ δgi

observ. i

σ ∼ Trunc-Norm(…, lower = 0)
μ ∼ Normal(…)
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HYPOTHESES & PARAMETER VALUES

▸ point-valued null hypothesis:  

▸ observe data  

▸ three ways of testing [recall three pillars of DA]: 

▸ estimation:  is 0 among the parameters estimated from ? 

▸ prediction: is  among the data predicted by a model with ? 

▸ comparison: take two models: one with , one where  takes on 
different values, too; which one explains  better?

δ = 0

D

D

D δ = 0

δ = 0 δ
D



Bayes rule for 
parameter 
estimation
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BAYES RULE FOR PARAMETER ESTIMATION

P(θ ∣ D) =
P(D ∣ θ) P(θ)

P(D)

P(D) = ∫ P(D ∣ θ) P(θ) dθ

posterior

priorlikelihood

marginal likelihood

marginal likelihood



▸ if there is only one model , we leave out the 
model index, writing  instead of    

▸ we write  instead of  

▸ short-hand with non-normalized probabilities 
(implicit normalizing constant):

M
P(θ) PM(θ)

P(θ ∣ D) P(Θ = θ ∣ 𝒟 = D)
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REMARKS ON NOTATION

P(θ | D)

posterior

∝ P(θ)
⏟

prior

P(D | θ)

likelihood



▸ model: 

▸ data: 

▸ “24/7” 

▸ “KoF”  
[number of “true” responses to all sentences with a false presupposition]
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EXAMPLE

k ∼ Binomial(N, θ)
θ ∼ Beta(α, β)

k = 7 N = 24
k = 109 N = 311
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PRIOR
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LIKELIHOOD
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POSTERIOR



Bayesian point- & 
interval-estimates



▸ model: ,  
▸ data: 

k ∼ Binomial(N, θ) θ ∼ Beta(1,1)
k = 7, N = 24

INTRODUCTION TO DATA ANALYSIS

EXAMPLE
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POSTERIOR MEAN & MAP

▸ posterior mean: 

▸ maximum a posteriori:

𝔼P(θ∣D) = ∫ θ P(θ ∣ D) dθ

MAP(P(θ ∣ D)) = arg max
θ

P(θ ∣ D)

•posterior mean is proper Bayesian 
measure, because it is holistic = 
influenced by whole distribution 

•MAP is local, not influenced by 
whole distribution 

•estimation of posterior mean is 
(usually) less error-prone than 
estimation of MAP
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CREDIBLE INTERVAL

▸ interval  is a  credible 
interval for a random variable  if 

(I)  , and 

(II) for every  and  
we have  

▸ “range of values too probable to 
properly ignore” 

[see David Lewis on “Elusive Knowledge”]

[l; u] γ %
X

P(l ≤ X ≤ u) =
γ

100
x ∈ [l; u] x′� ∉ [l; u]

P(X = x) > P(X = x′�)



posteriors from 
conjugacy
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BAYES RULE FOR PARAMETER ESTIMATION

P(θ ∣ D) =
P(D ∣ θ) P(θ)

∫ P(D ∣ θ) P(θ) dθ
✓fast & easy

✓fast & easy

❌☠ possibly intractable ☠❌
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CONJUGACY

▸ prior  is a conjugate prior for likelihood 
 iff prior  and posterior  are 

of the same kind of probability distribution 
(possibly with different parameter values) 

▸ e.g., prior and posterior are both normal 
distributions, but have different means and 
standard deviations

P(θ)
P(D ∣ θ) P(θ) P(θ ∣ D)

prior
posterior

likelihood
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CONJUGACY OF BETA & BINOMIAL

▸ claim: beta & binomial are conjugate 

▸ proof:

prior
posterior

likelihoodP(θ ∣ k, N) ∝ Binomial(k; N, θ) Beta(θ | a, b)
P(θ ∣ k, N) ∝ θk (1 − θ)N−k θa−1 (1 − θ)b−1

P(θ ∣ k, N) ∝ θk+a−1 (1 − θ)N−k+b−1

P(θ ∣ k, N) = Beta(θ | k + a, N − k + b)



sequential 
updating
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SEQUENTIAL UPDATING IN THE BETA-BINOMIAL MODEL
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SEQUENTIAL UPDATING IN GENERAL
▸ claim: if  and  are disjoint and ,    

▸ proof:

D1 D2 D1 ∪ D2 = D P(θ ∣ D) ∝ P(θ ∣ D1) P(D2 ∣ θ)

P(θ ∣ D) =
P(θ) P(D ∣ θ)

∫ P(θ′�) P(D ∣ θ′�)dθ′�

=
P(θ) P(D1 ∣ θ) P(D2 ∣ θ)

∫ P(θ′�) P(D1 ∣ θ′�) P(D2 ∣ θ′�)dθ′�

[from multiplicativity of likelihood]

=
P(θ) P(D1 ∣ θ) P(D2 ∣ θ)

k
k

∫ P(θ′�) P(D1 ∣ θ′ �) P(D2 ∣ θ′�)dθ′�

[for random positive k]

=
P(θ) P(D1 ∣ θ)

k
P(D2 ∣ θ)

∫ P(θ′�) P(D1 ∣ θ′�)
k

P(D2 ∣ θ′�)dθ′�

[rules of integration; basic calculus]

=
P(θ ∣ D1) P(D2 ∣ θ)

∫ P(θ′� ∣ D1) P(D2 ∣ θ′�)dθ′�

[Bayes rule with k = ∫ P(θ)P(D1 ∣ θ)dθ]



frequentist 
estimation
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MAXIMUM LIKELIHOOD ESTIMATE

▸ maximum likelihood estimate: 
̂θ = arg max

θ
P(d ∣ θ)
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CONFIDENCE INTERVAL [MATHEMATICALLY]

▸ let  be the random variable describing the probability of data 

▸  and  are random variables derived from  via functions  and  so that 
 

▸ a  confidence interval for observed data  is the interval: 

 

▸ where functions  are constructed so that: 

 

▸ and where  is the true value

𝒟

Xl Xu 𝒟 gl gu
gl,u : D ↦ ℝ

γ % Dobs

[gl(Dobs), gu(Dobs)]
gl,u

P(Xl ≤ θtrue ≤ Xu) =
γ

100
θtrue
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CONFIDENCE INTERVAL [ALGORITHMICALLY]
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CONFIDENCE INTERVAL [ALGORITHMICALLY]

▸ fix number of coin flips  (not really necessary, but easier) 

▸ suppose the true coin bias is  (but we don’t know it) 

▸ we have a magic function  

▸ we now sample repeatedly   

▸ for each sample , compute  

▸  gives us a confidence interval if  is 
inside of  in  of the sampled s

N

θtrue

MF : k ↦ [uk; lk]

k ∼ Binomial(N, θtrue)

k MF(k) = [uk; lk]

MF γ % θtrue
MF(k) = [uk; lk] γ % k



addressing point-
valued hypotheses 
with estimation
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ADDRESSING POINT-VALUED HYPOTHESES [BAYES]

▸  is out point-valued hypothesis 

▸ a region of practical equivalence [ROPE] is an -region around : 
 

▸ for a Bayesian credible interval  for , we: 

▸ accept the point-valued hypothesis iff  is contained entirely in ; 

▸ reject the point-valued hypothesis iff  and  have no overlap; 

▸ withhold judgement otherwise.

Θi = θ*i
ϵ θ*i

ROPE(θ*i ) = [θ*i − ϵ, θ*i + ϵ]

[l; u] Θi

[l; u] ROPE(θ*i )

[l; u] ROPE(θ*i )
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ADDRESSING POINT-VALUED HYPOTHESES [FREQUENTIST]

▸  is out point-valued hypothesis 

▸ we do not consider a ROPE 

▸ for a frequentist credible interval  for , we: 

▸ reject the point-valued hypothesis iff ; and 

▸ withhold judgement otherwise.

Θi = θ*i

[l; u] Θi

θ*i ∉ [l; u]
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EXAMPLE

▸ 24/7 example, uninformative 
priors for Bayesian model 

▸ point- and interval estimates:



comparison



INTRODUCTION TO DATA ANALYSIS

BAYESIAN VS FREQUENTIST ESTIMATES

▸ for Bayesianism the full posterior is the primary object of concern; point- and 
interval-estimates are essentially just summary statistics for the full posterior 

▸ for frequentists the point- and interval-estimates are the primary object of 
concern 

▸ MLEs are much easier to compute but might not exist 

▸ posteriors can be very hard to compute (long run time)
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A PUZZLE ABOUT POINT-ESTIMATES

▸ flip a coin of unknown bias once 

▸ suppose you see heads 

▸ what’s your best estimate of the bias? 

▸ MLE  = 1 

▸ posterior mean (uninformative priors) = 2/3
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SIMULATION-BASED COMPARISON OF INTERVAL-ESTIMATES

▸ fix  

▸ repeatedly do:  

▸ sample  

▸ sample  

▸ compute intervals for  and  

▸ HDI, exact CI, approximate CI 

▸ look at percentage that  is included 
in each interval construction

N ∈ {10,25,100,1000}

θtrue ∼ Beta(1,1)

k ∼ Binomial(θtrue, N)

k N

θtrue
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RESULTS



computing 
estimates
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OPTIMIZING FUNCTIONS
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MARKOV CHAIN MONTE CARLO



probabilistic 
models with 
greta
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BINOMIAL MODEL

k ∼ Binomial(θ, N)

k

θ
θ ∼ Beta(1,1)

N
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BINOMIAL MODEL

k ∼ Binomial(θ, N)

k

θ
θ ∼ Beta(1,1)

N
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BINOMIAL MODEL

k ∼ Binomial(θ, N)

k

θ
θ ∼ Beta(1,1)

N
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BINOMIAL MODEL

k ∼ Binomial(θ, N)

k

θ
θ ∼ Beta(1,1)

N
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T-TEST MODEL [WITH DELTA]

yi

σ μ δgi

observ. i
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T-TEST MODEL [WITH DELTA]

yi

σ μ δgi

observ. i


