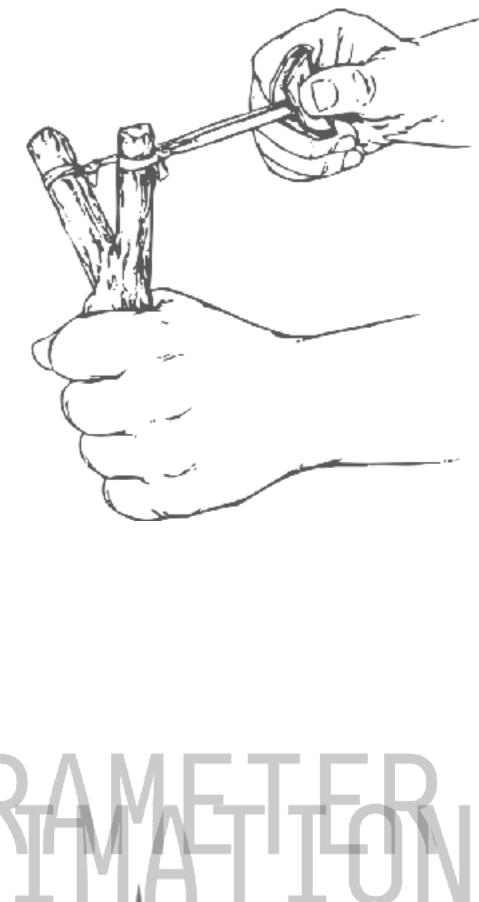
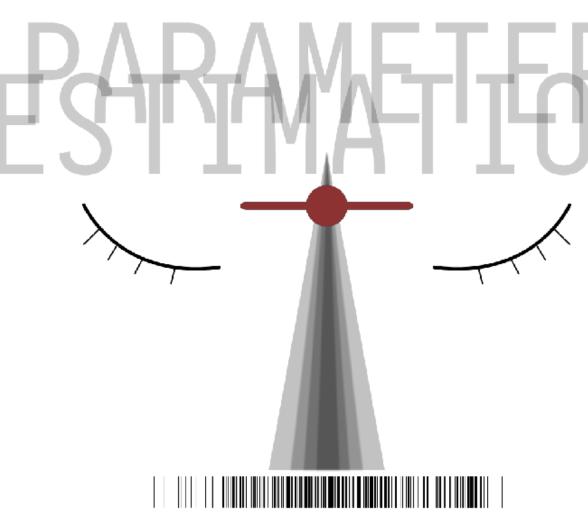
ITRODUCTION TO DATA ANALYSIS

LEARNING GOALS

- understand Bayes rule for parameter estimation
 - (conjugate) priors, likelihood
- point-valued & interval-based estimators
 - frequentist: MLE, confidence intervals
 - Bayes: mean of posterior, credible intervals
- implement probabilistic models in greta
- compute with posterior samples





ESTIMATES

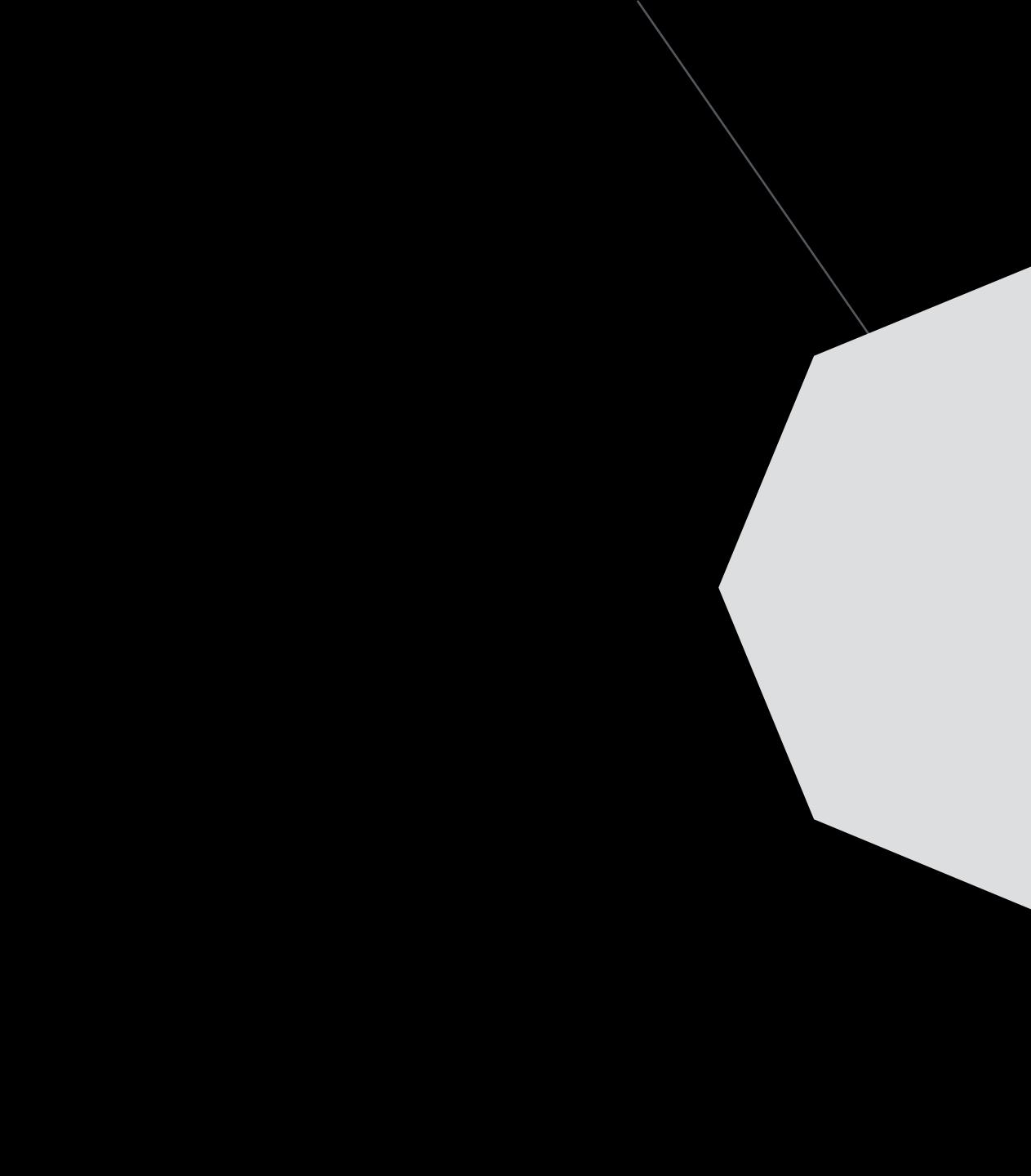
- point-valued: single "best" values
- interval-range: "good" values (around "best" value)

estimate	Bayesian
best value	mean of posterior poster
interval range	credible interval (HDI)

frequentist

maximum likelihood estimate rior

confidence interval

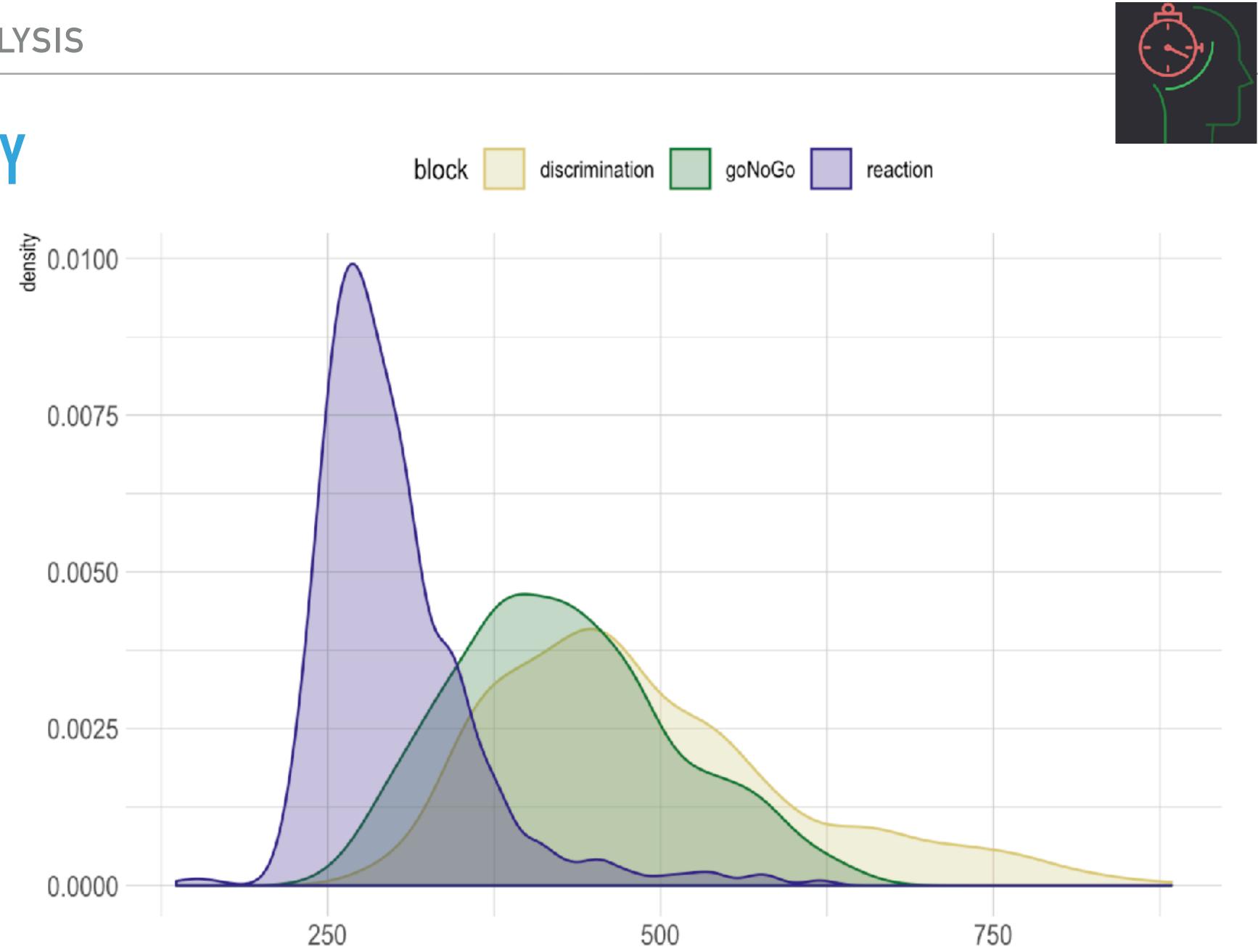


model-based hypothesis testing

MENTAL CHRONOMETRY

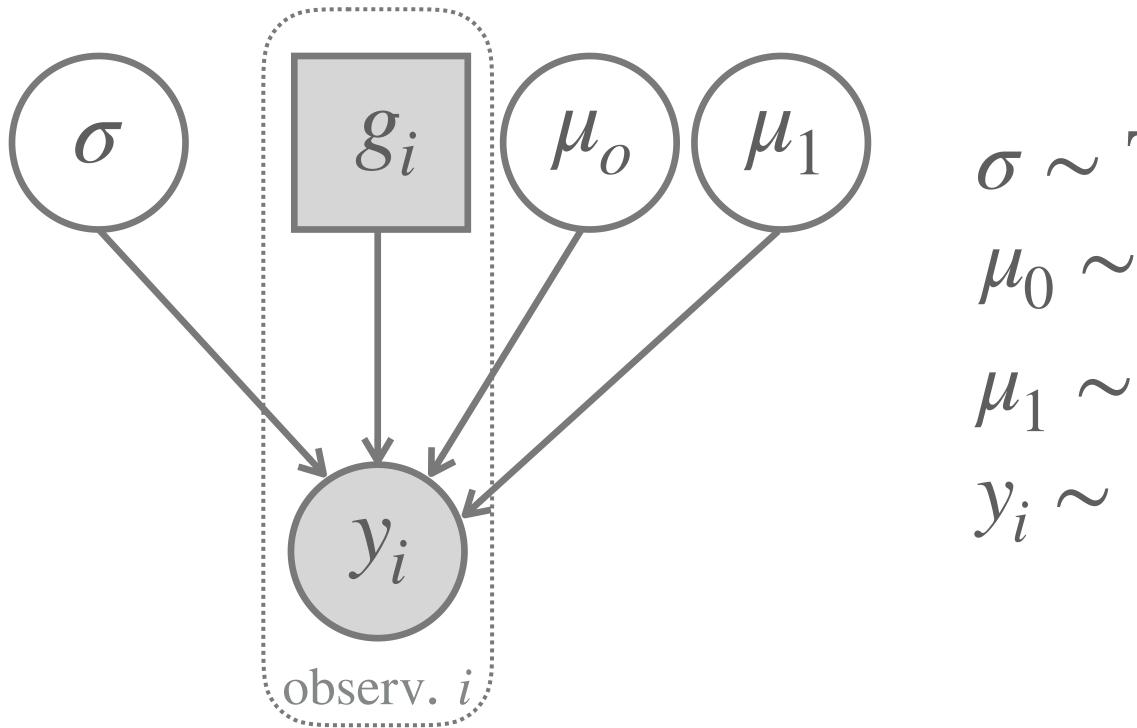
- N=50 participants recruited via Prolific
- three blocks / conditions
 - reaction press button when a shape appears
 - go/no-go press button for shape 1; don't press for shape 2
 - discrimination press one button for shape 1, another for shape 2

MENTAL CHRONOMETRY



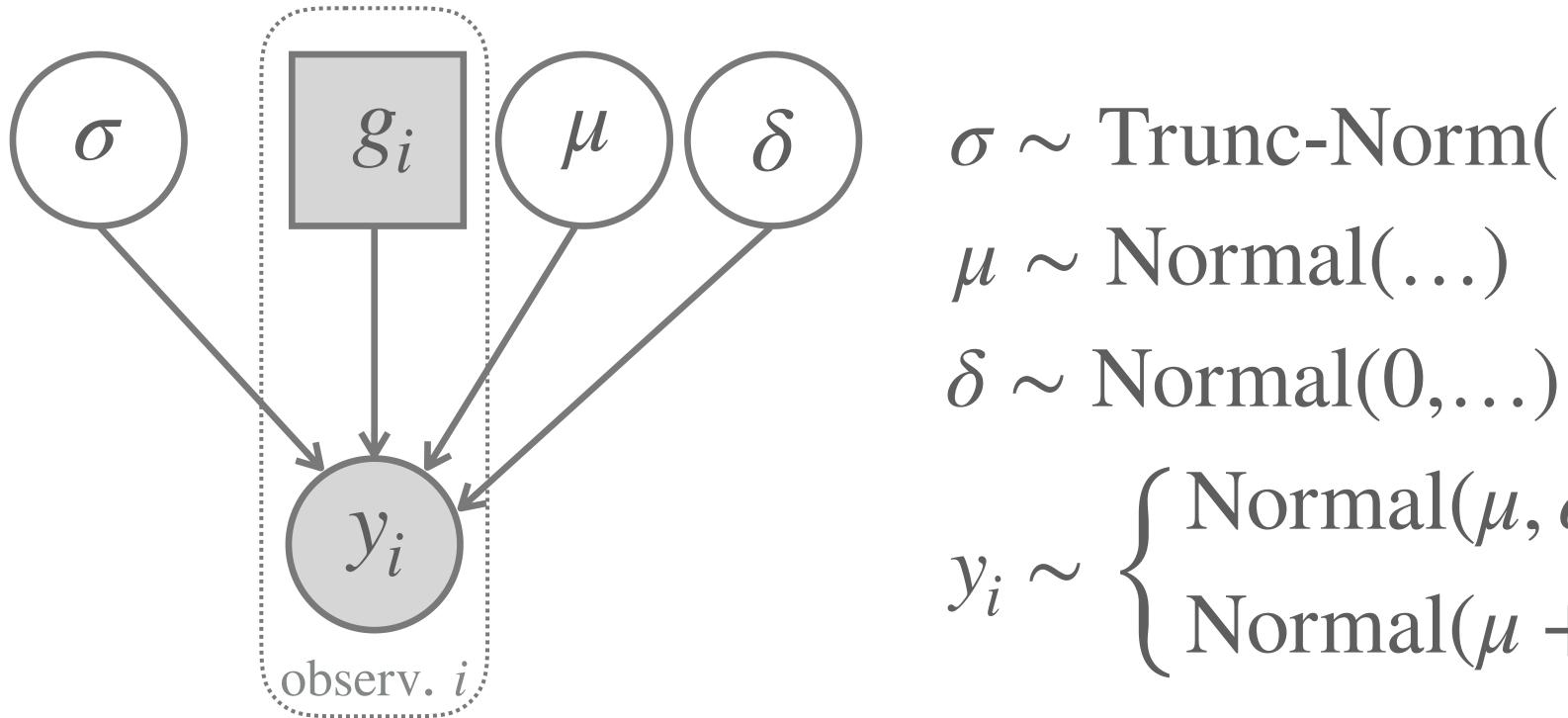
RT

T-TEST MODEL [TWO UNCOUPLED MEANS]



- $\sigma \sim \text{Trunc-Norm}(..., \text{lower} = 0)$ $\mu_0 \sim \text{Normal}(...)$
- $\mu_1 \sim \text{Normal}(...)$ $y_i \sim \text{Normal}(\mu_{g_i}, \sigma)$

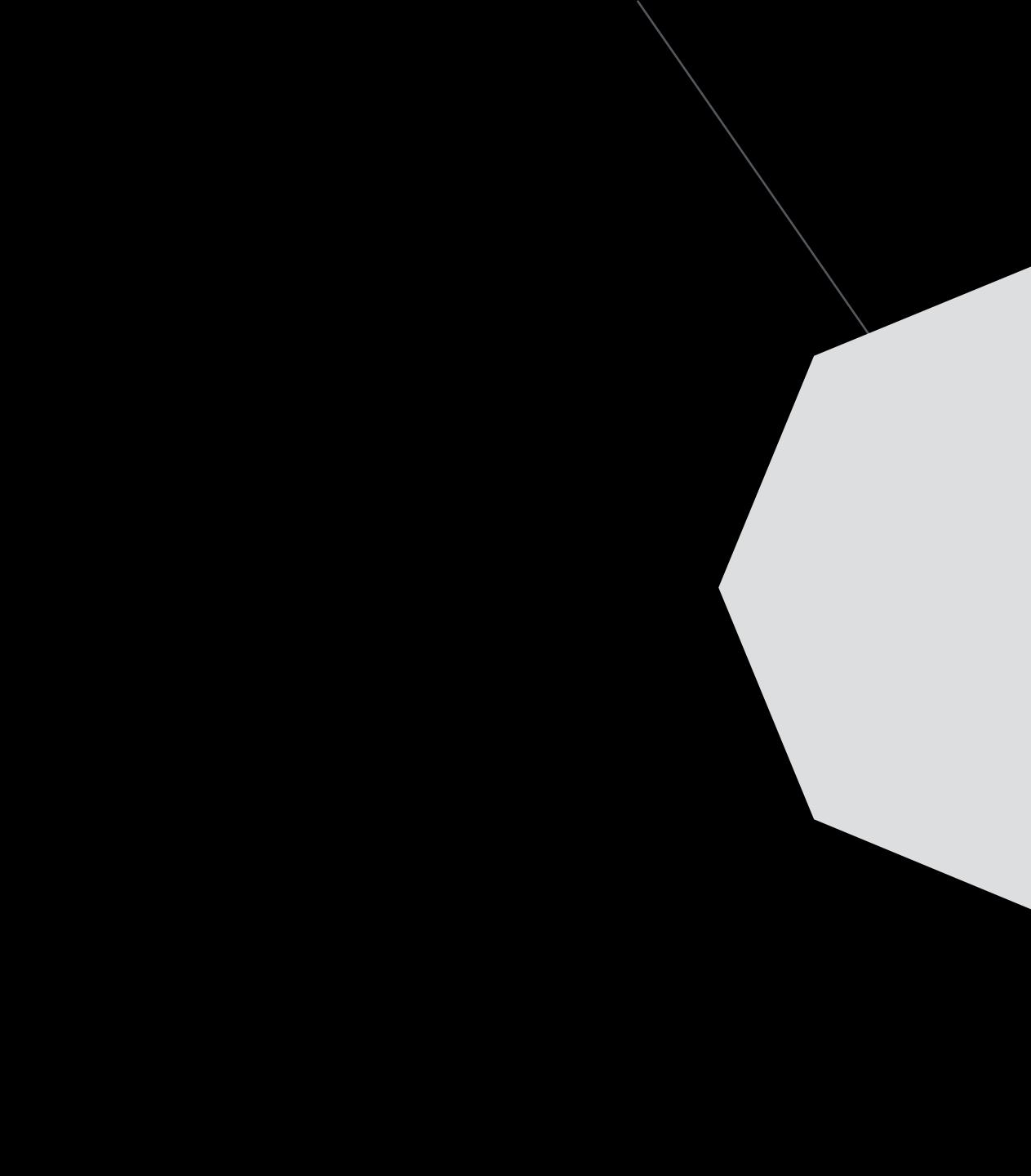
T-TEST MODEL [WITH DIFFERENCE BETWEEN MEANS]



- $\sigma \sim \text{Trunc-Norm}(..., \text{lower} = 0)$ $\mu \sim \text{Normal}(...)$
- $y_i \sim \begin{cases} \text{Normal}(\mu, \sigma) & \text{if } g_i = 0\\ \text{Normal}(\mu + \delta, \sigma) & \text{if } g_i = 1 \end{cases}$

HYPOTHESES & PARAMETER VALUES

- > point-valued null hypothesis: $\delta = 0$
- observe data D
- three ways of testing [recall three pillars of DA]:
 - estimation: is 0 among the parameters estimated from D?
 - prediction: is D among the data predicted by a model with $\delta = 0$?
 - comparison: take two models: one with $\delta = 0$, one where δ takes on different values, too; which one explains D better?



Bayes rule for parameter estimation

BAYES RULE FOR PARAMETER ESTIMATION

$P(\theta)$ _ posterior

REMARKS ON NOTATION

- if there is only one model M, we leave out the model index, writing $P(\theta)$ instead of $P_M(\theta)$
- we write $P(\theta \mid D)$ instead of $P(\Theta = \theta \mid \mathscr{D} = D)$
- short-hand with non-normalized probabilities (implicit normalizing constant):

 $P(\theta \mid D) \propto P(\theta) \mid P(D \mid \theta)$

posterior

prior likelihood

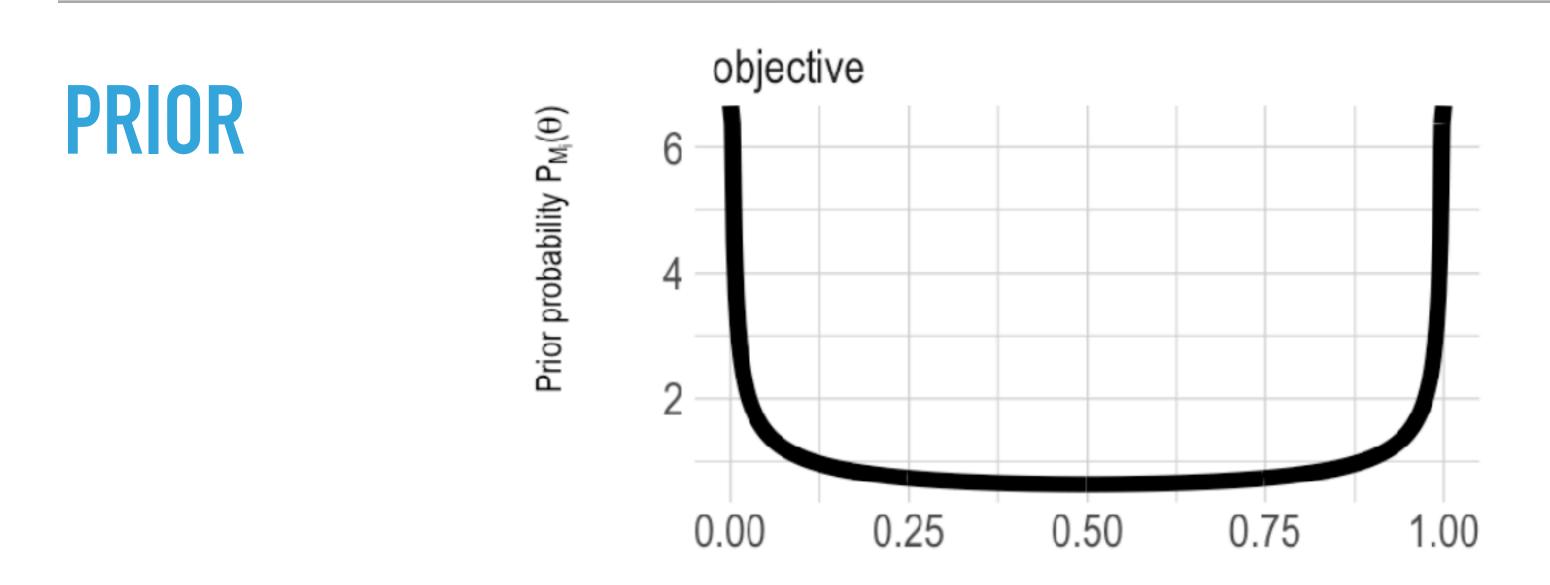
EXAMPLE

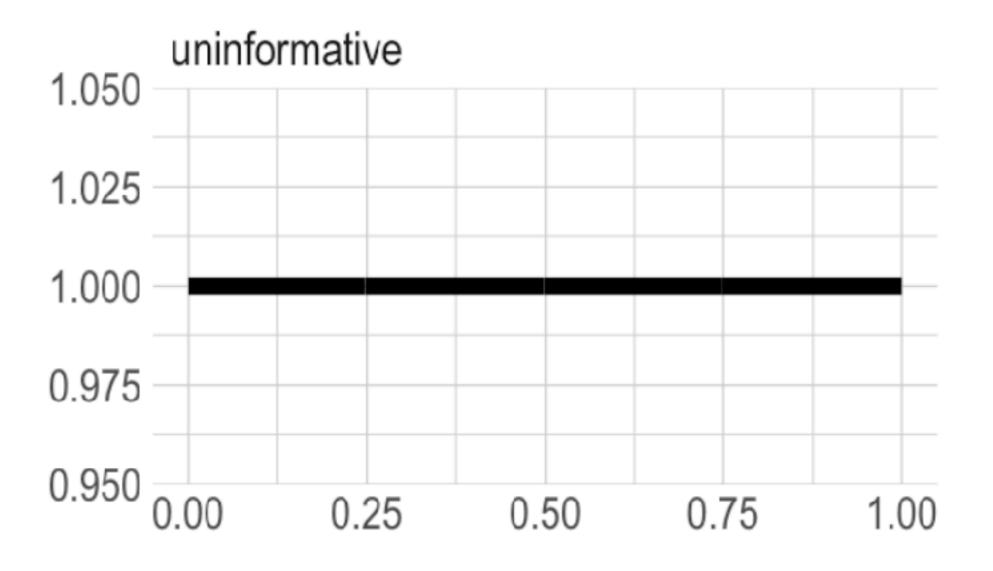
model: $k \sim \text{Binomial}(N, \theta)$ $\theta \sim \text{Beta}(\alpha, \beta)$

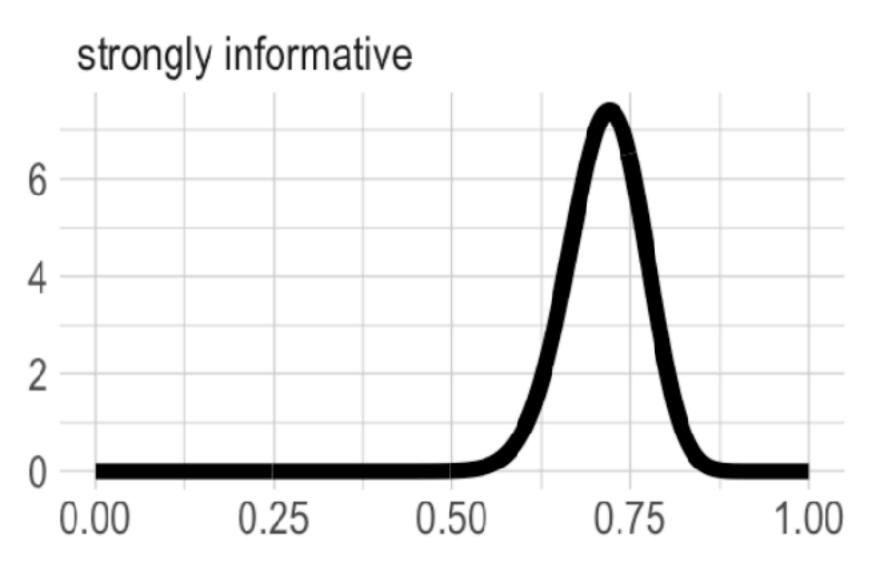
data:

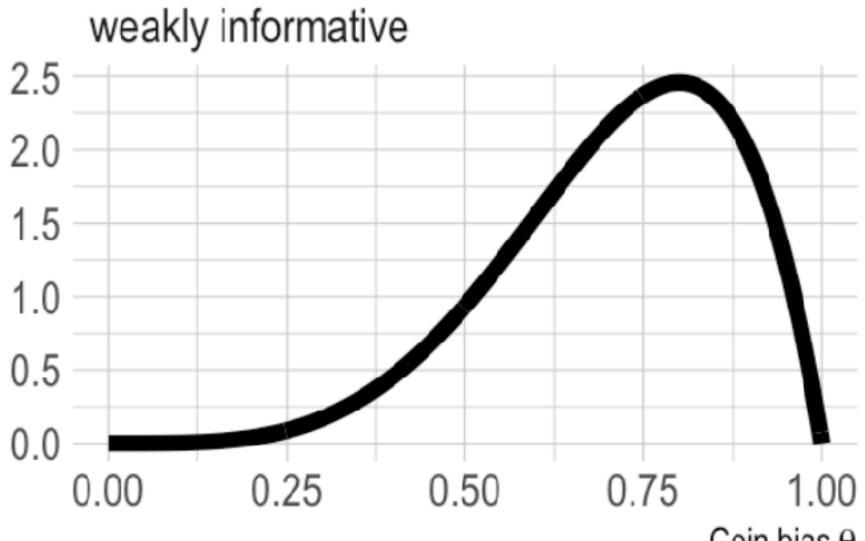
- N = 24
- "KoF" k = 109 N = 311[number of "true" responses to all sentences with a false presupposition]

INTRODUCTION TO DATA ANALYSIS



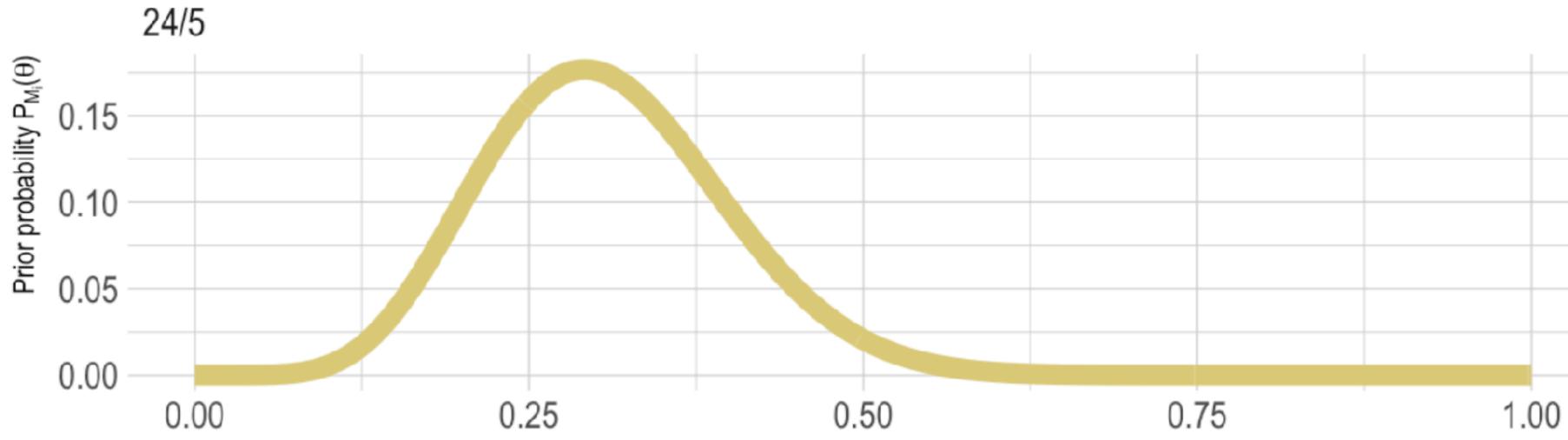


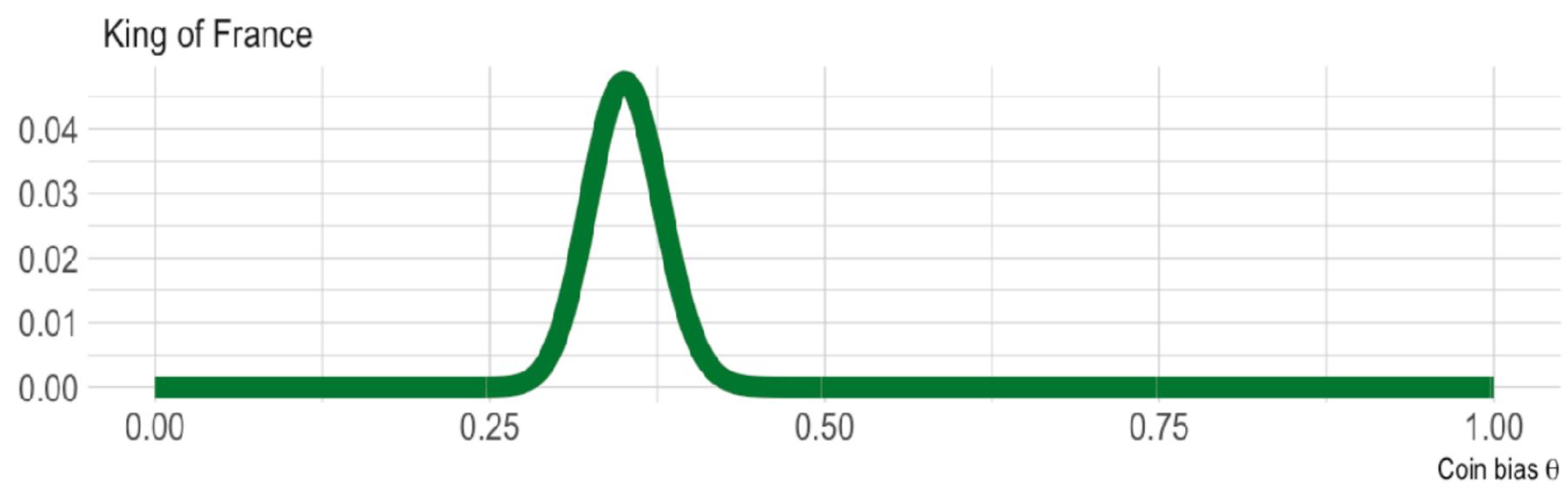




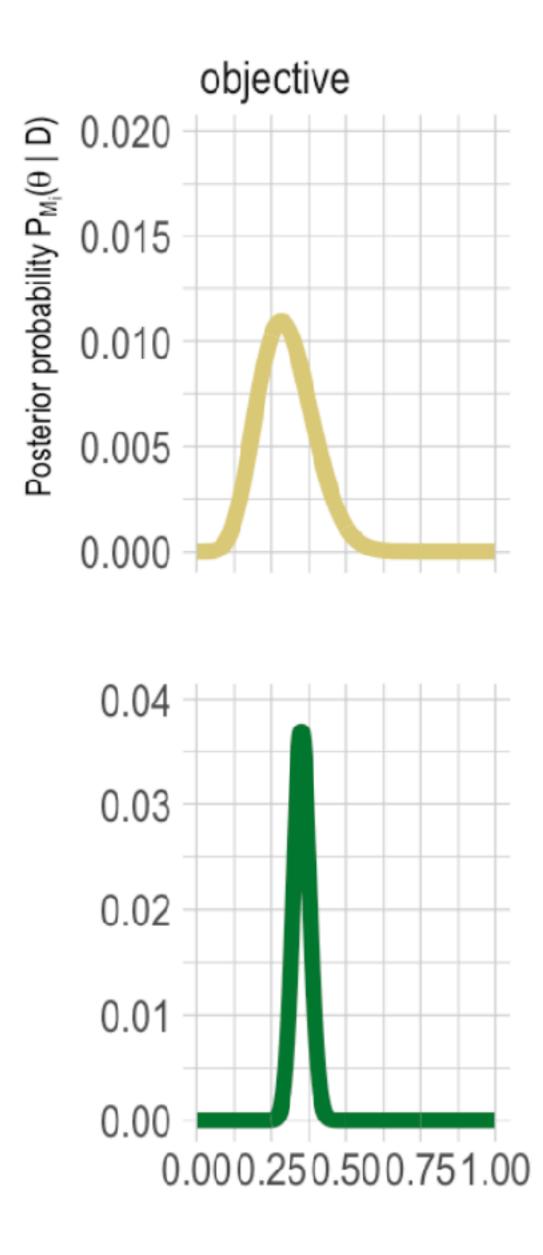
Coin bias $\boldsymbol{\theta}$

LIKELIHOOD

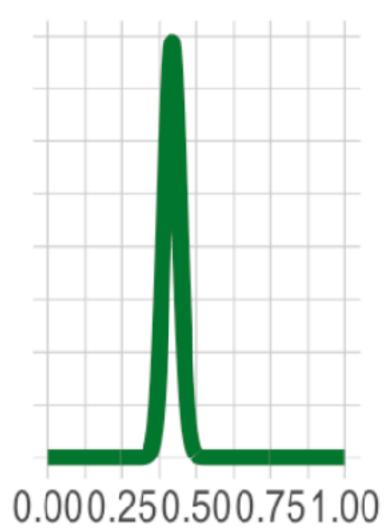


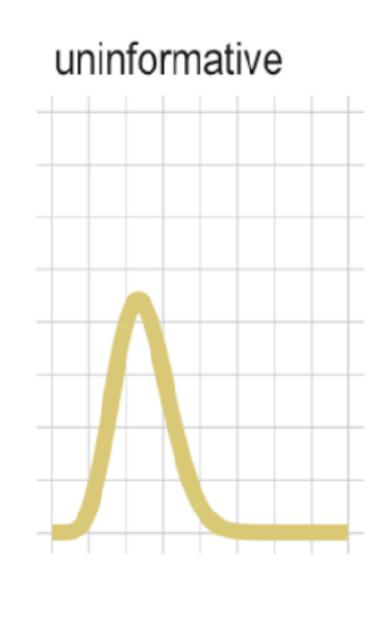


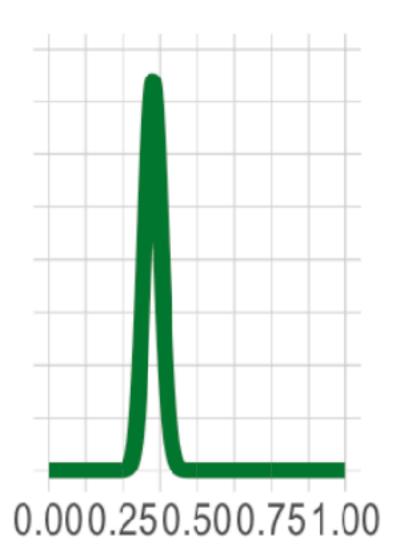
POSTERIOR



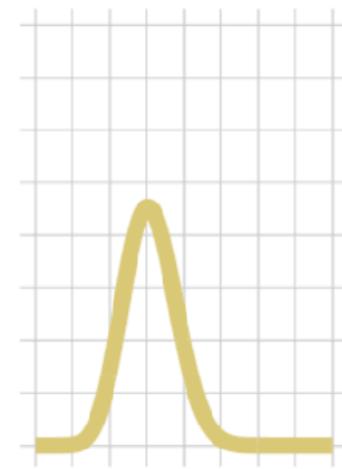
strongly informativ

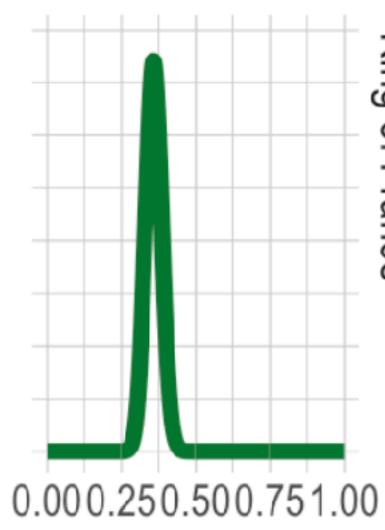




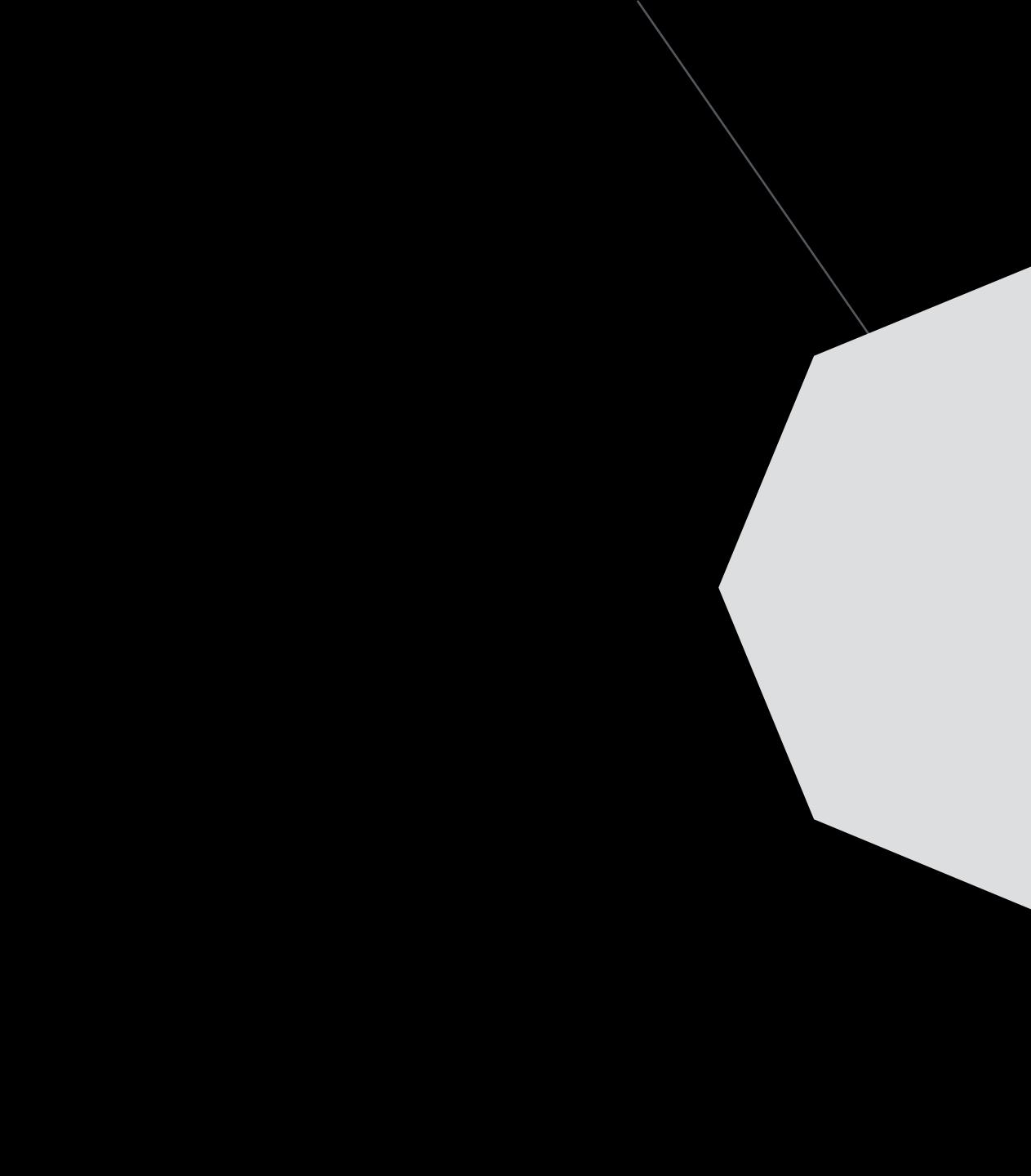


weakly informative





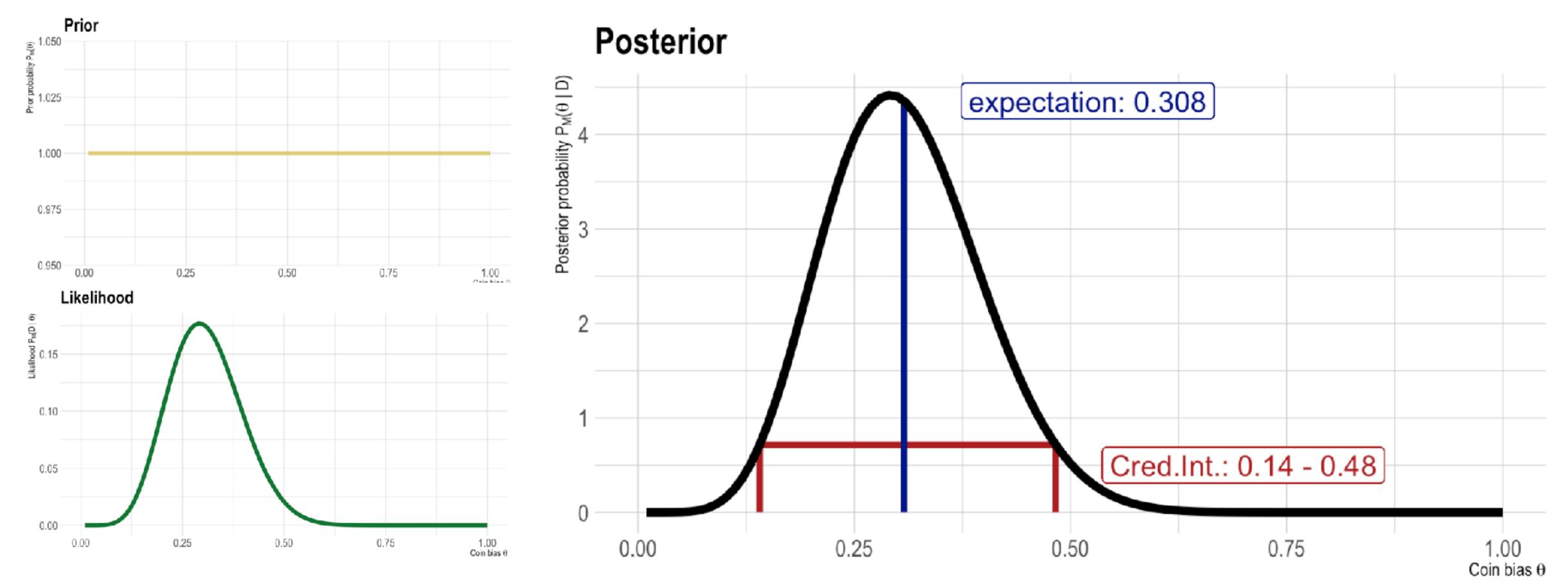
Coin bias θ



Bayesian point- & interval-estimates

EXAMPLE

• model: $k \sim \text{Binomial}(N, \theta), \theta \sim \text{Beta}(1, 1)$ • data: k = 7, N = 24



POSTERIOR MEAN & MAP

• posterior mean: $\mathbb{E}_{P(\theta|D)} = \int \theta \ P(\theta \mid D) \ \mathsf{d}\theta$

> maximum a posteriori:

 $MAP(P(\theta \mid D)) = \arg \max_{\theta} P(\theta \mid D)$

- posterior mean is proper Bayesian measure, because it is holistic = influenced by whole distribution
- •MAP is local, not influenced by whole distribution
- •estimation of posterior mean is (usually) less error-prone than estimation of MAP

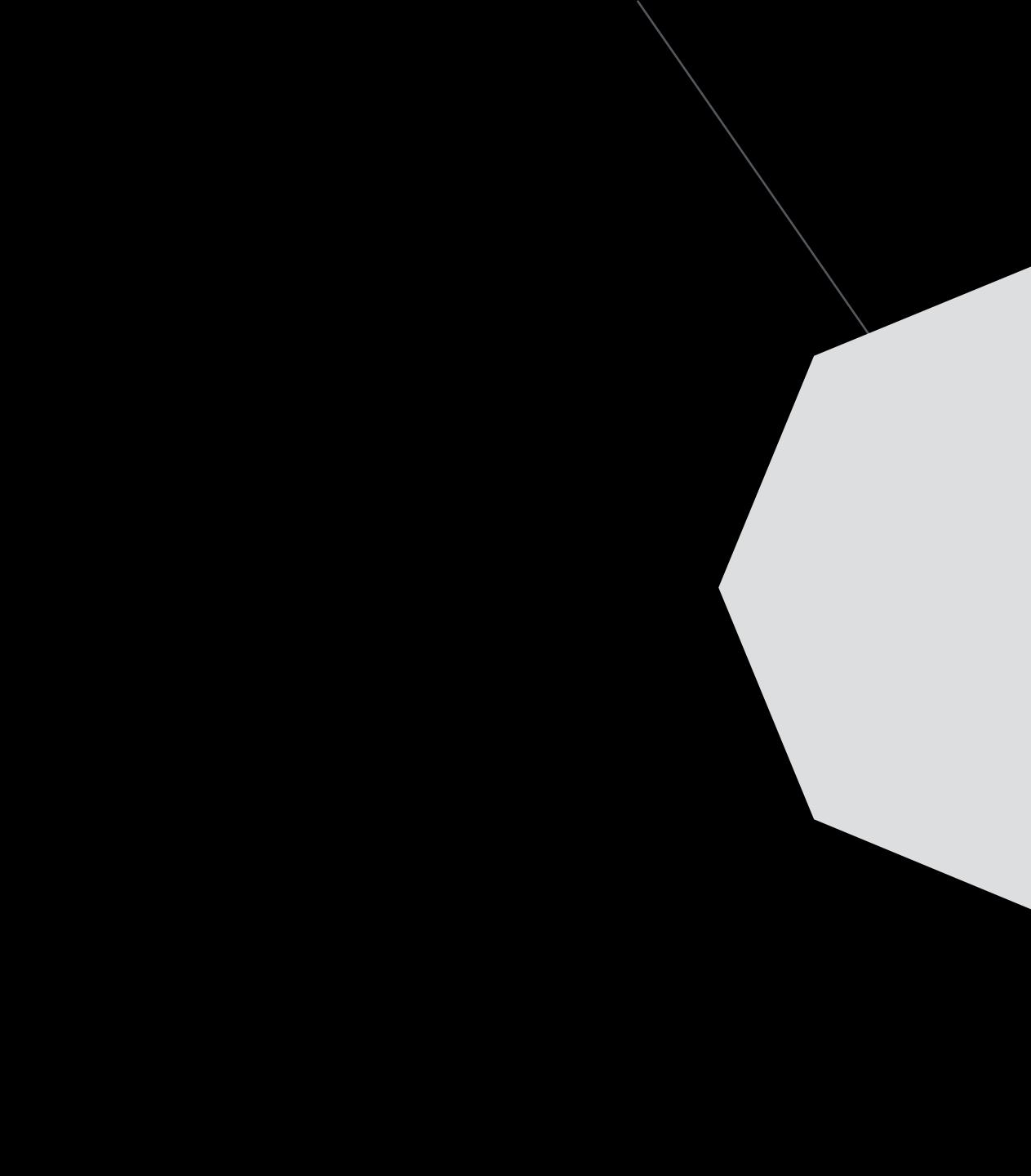
CREDIBLE INTERVAL

• interval [l; u] is a $\gamma \%$ credible interval for a random variable X if \mathcal{N}

(I)
$$P(l \le X \le u) = \frac{7}{100}$$
, and

- (II) for every $x \in [l; u]$ and $x' \notin [l; u]$ we have P(X = x) > P(X = x')
- "range of values too probable to properly ignore"

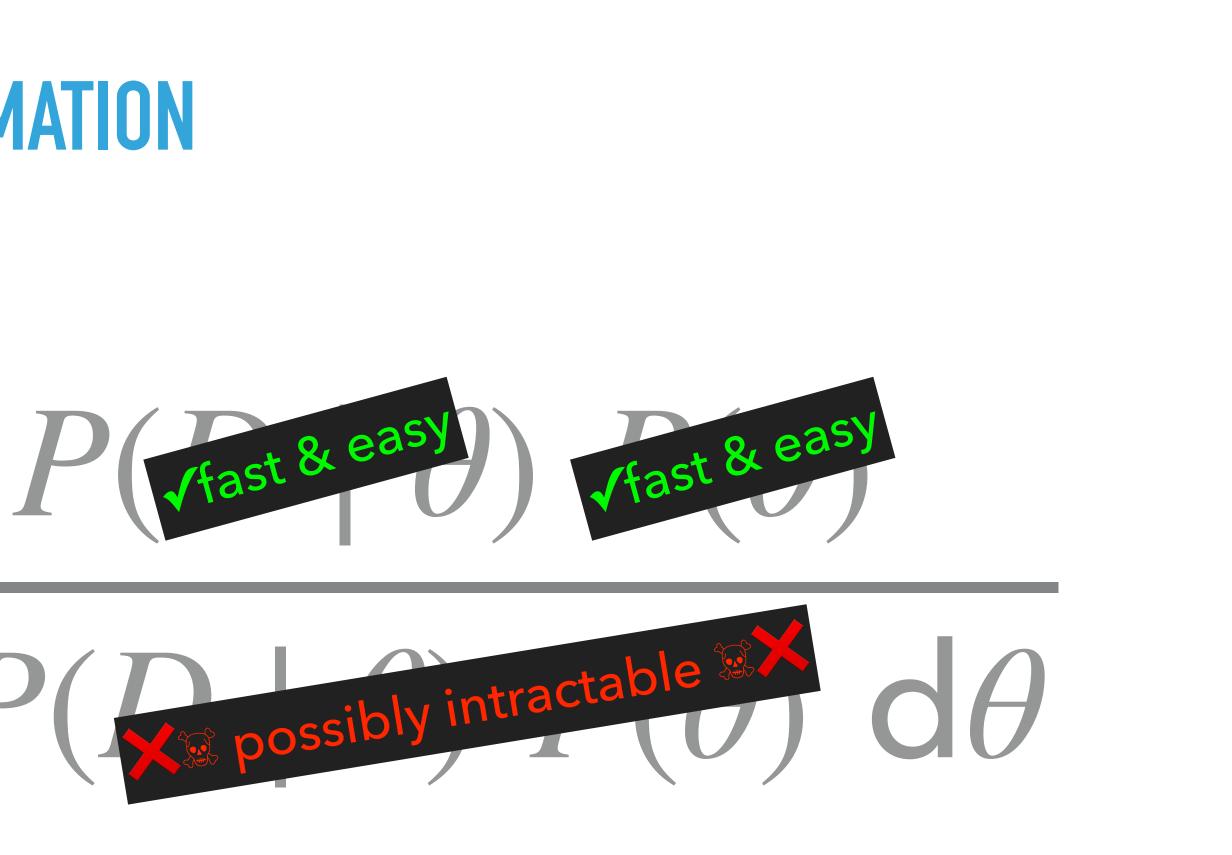
[see David Lewis on "Elusive Knowledge"]



posteriors from conjugacy

BAYES RULE FOR PARAMETER ESTIMATION

$P(\theta \mid D) = -\frac{1}{P(\theta \mid D)}$



CONJUGACY

- > prior $P(\theta)$ is a conjugate prior for likelihood $P(D \mid \theta)$ iff prior $P(\theta)$ and posterior $P(\theta \mid D)$ are of the same kind of probability distribution (possibly with different parameter values)
- e.g., prior and posterior are both normal distributions, but have different means and standard deviations

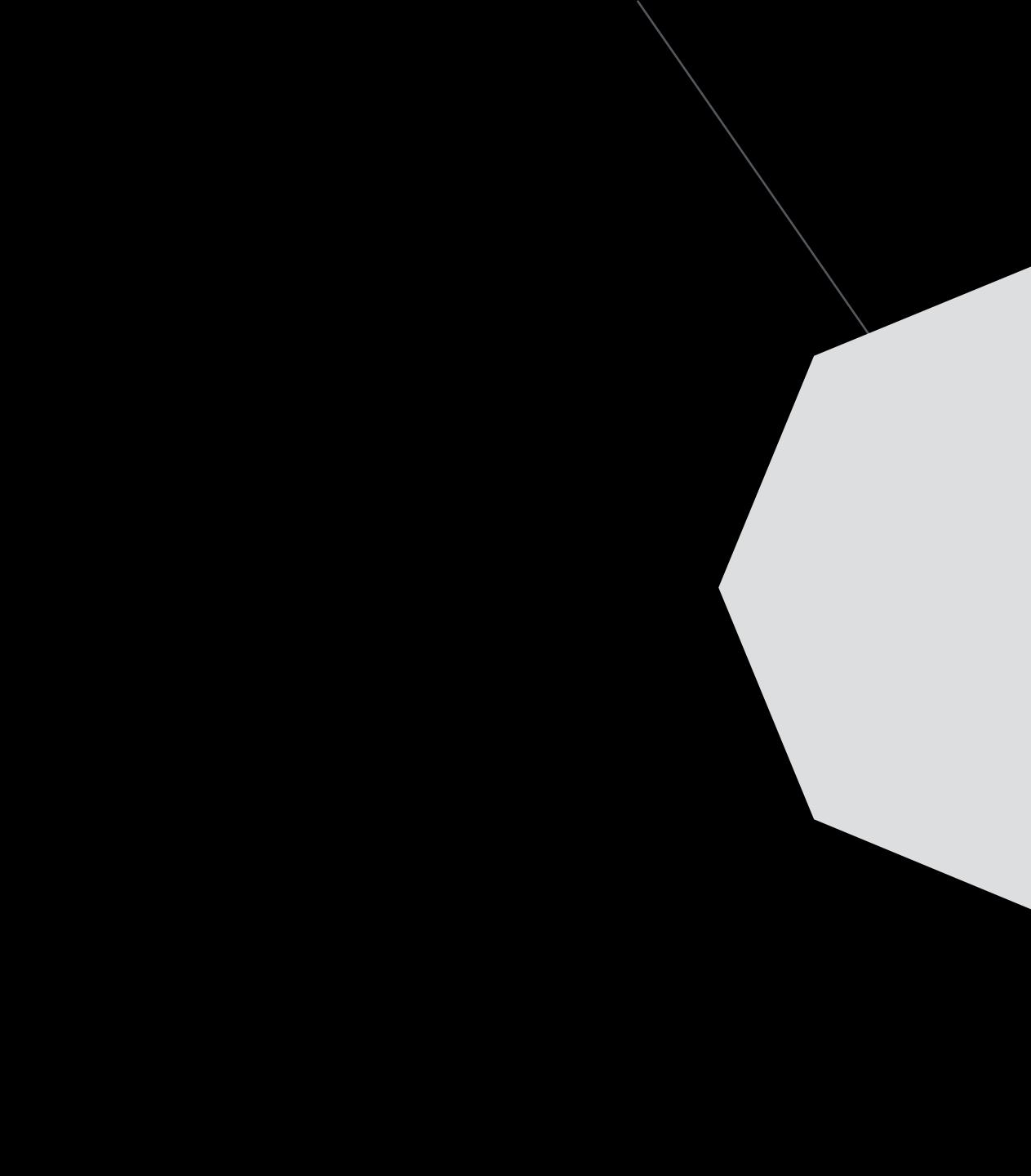
likelihood

CONJUGACY OF BETA & BINOMIAL

claim: beta & binomial are conjugate proof:

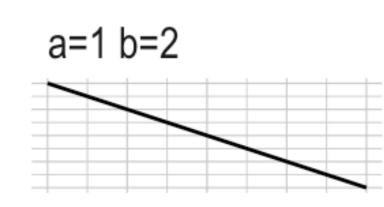
 $P(\theta \mid k, N) \propto \text{Binomial}(k; N, \theta) \text{Beta}(\theta \mid a, b)$ $P(\theta \mid k, N) \propto \theta^k (1 - \theta)^{N-k} \theta^{a-1} (1 - \theta)^{b-1}$ $P(\theta \mid k, N) \propto \theta^{k+a-1} (1-\theta)^{N-k+b-1}$ $P(\theta \mid k, N) = \text{Beta}(\theta \mid k + a, N - k + b)$

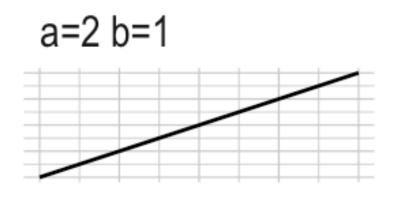
likelihood

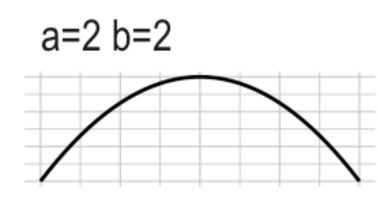


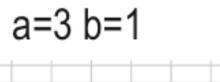
sequential updating

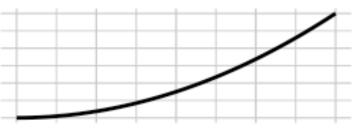
SEQUENTIAL UPDATING IN THE BETA-BINOMIAL MODEL

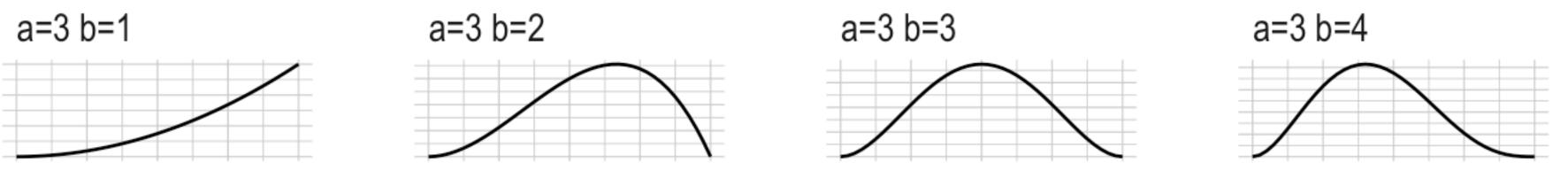


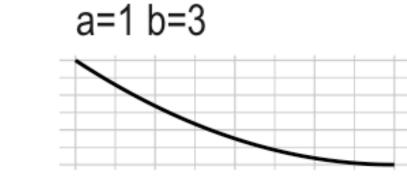


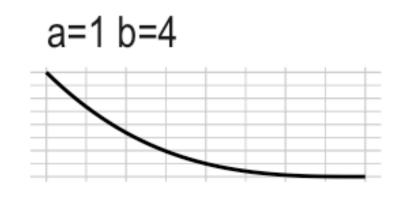


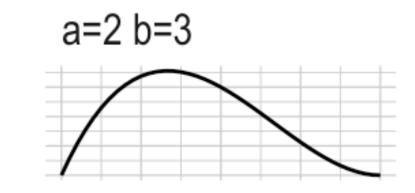


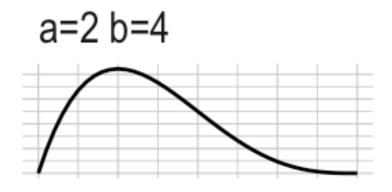




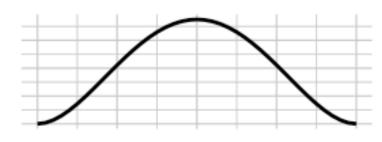


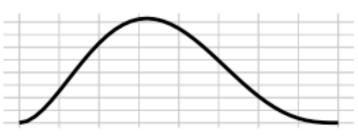






a=3 b=3





SEQUENTIAL UPDATING IN GENERAL

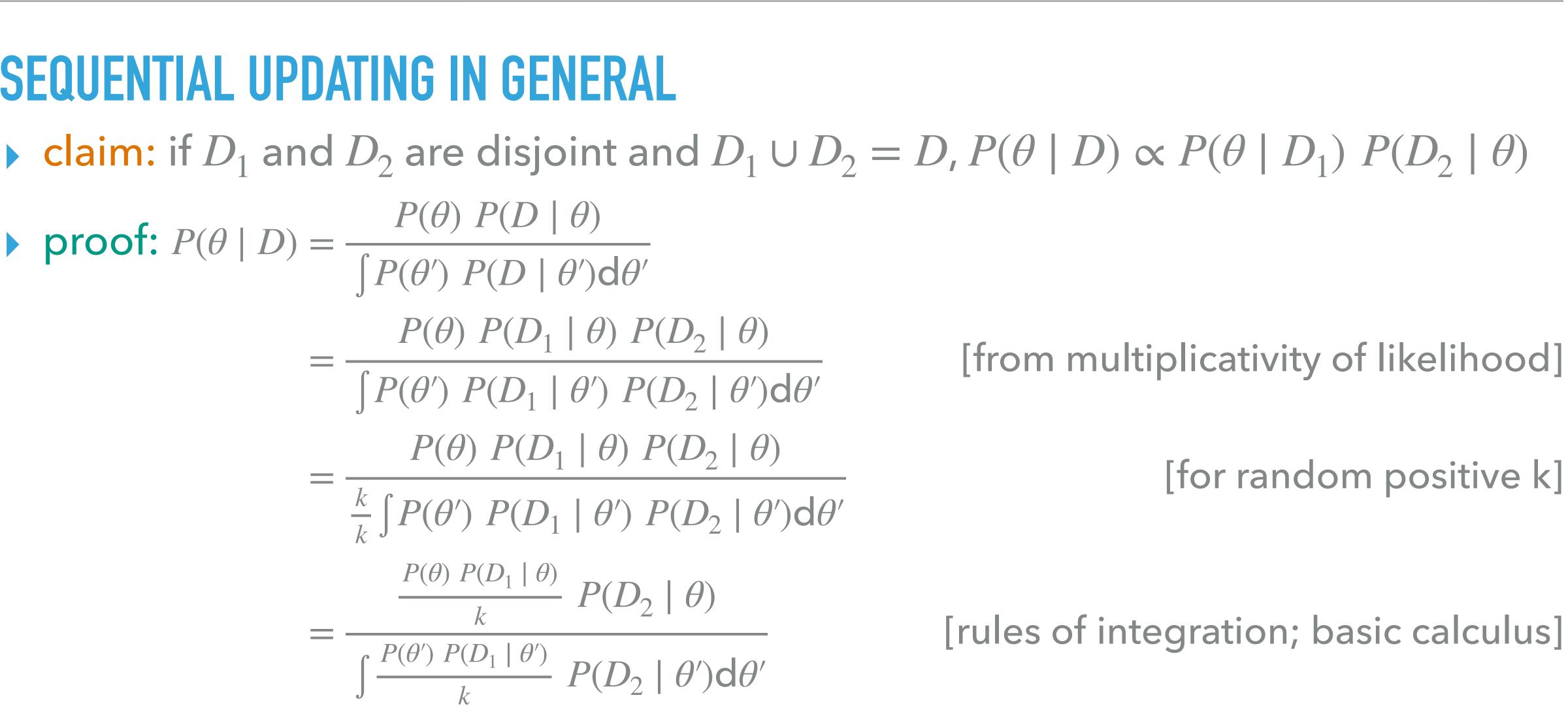
- ► proof: $P(\theta \mid D) = \frac{P(\theta) P(D \mid \theta)}{\int P(\theta') P(D \mid \theta') d\theta'}$

 - $= \frac{P(\theta) P(D_1 \mid \theta) P(D_2 \mid \theta)}{\int P(\theta') P(D_1 \mid \theta') P(D_2 \mid \theta') d\theta'}$
 - $= \frac{P(\theta) P(D_1 \mid \theta) P(D_2 \mid \theta)}{\frac{k}{k} \int P(\theta') P(D_1 \mid \theta') P(D_2 \mid \theta') \mathsf{d}\theta'}$

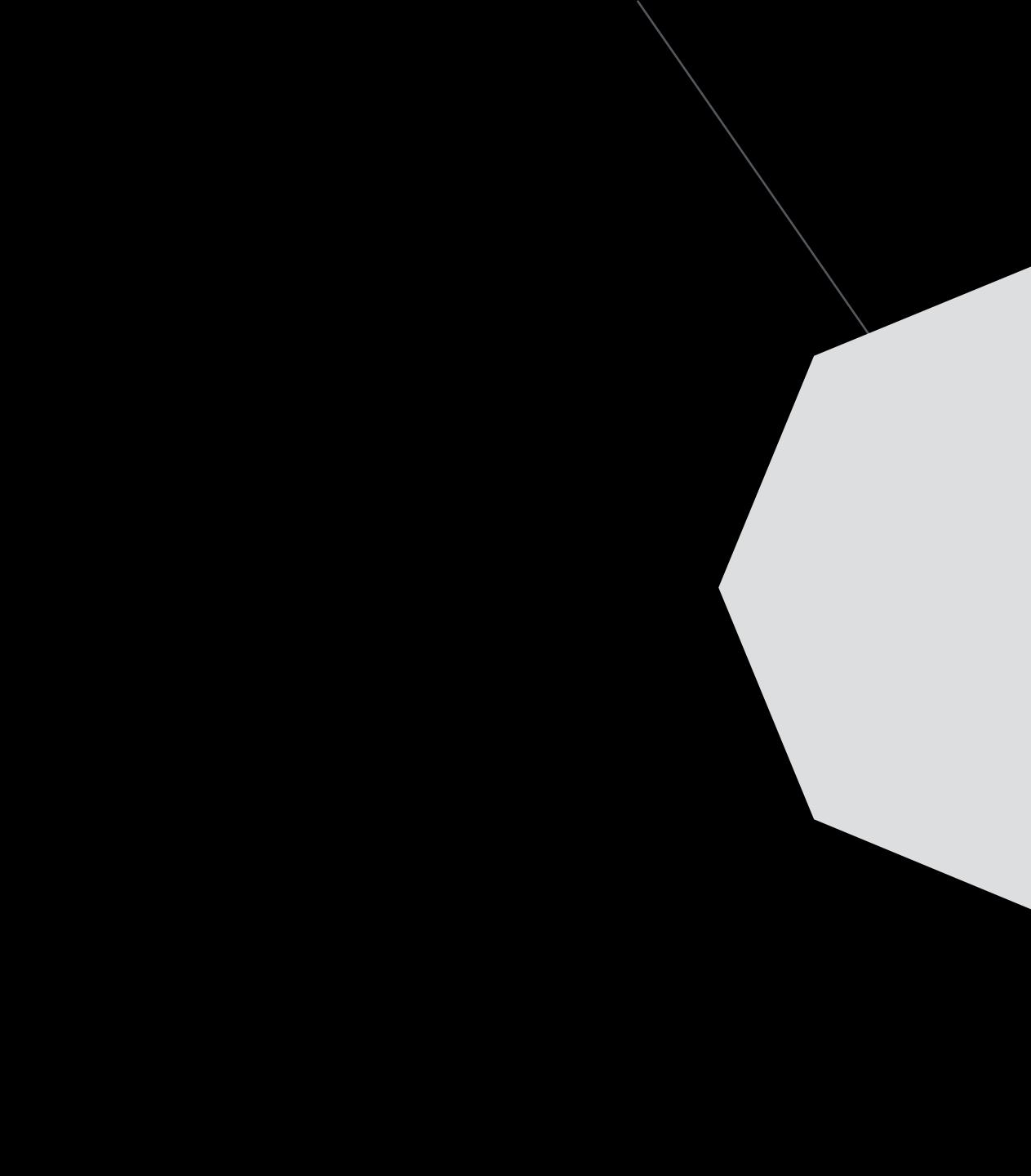
$$\frac{P(\theta) P(D_1 \mid \theta)}{k} P(D_2 \mid \theta)$$

 $\int \frac{P(\theta') P(D_1 \mid \theta')}{P(D_2 \mid \theta') d\theta'} P(D_2 \mid \theta') d\theta'$

 $= \frac{P(\theta \mid D_1) P(D_2 \mid \theta)}{\int P(\theta' \mid D_1) P(D_2 \mid \theta') d\theta'}$



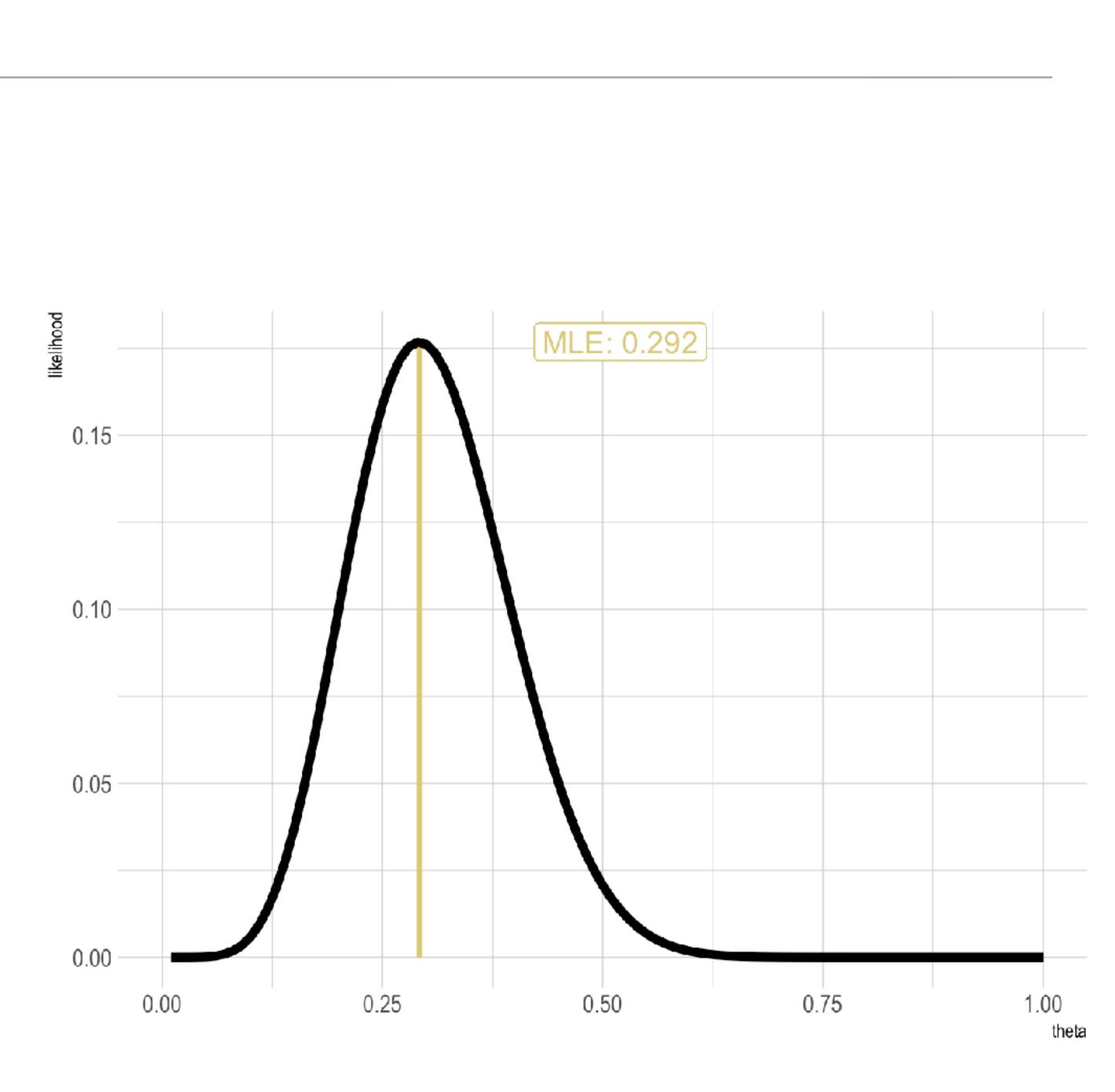
[Bayes rule with $k = \begin{bmatrix} P(\theta)P(D_1 \mid \theta)d\theta \end{bmatrix}$



frequentist estimation

MAXIMUM LIKELIHOOD ESTIMATE

maximum likelihood estimate: $\hat{\theta} = \arg \max_{\theta} P(d \mid \theta)$



CONFIDENCE INTERVAL [MATHEMATICALLY]

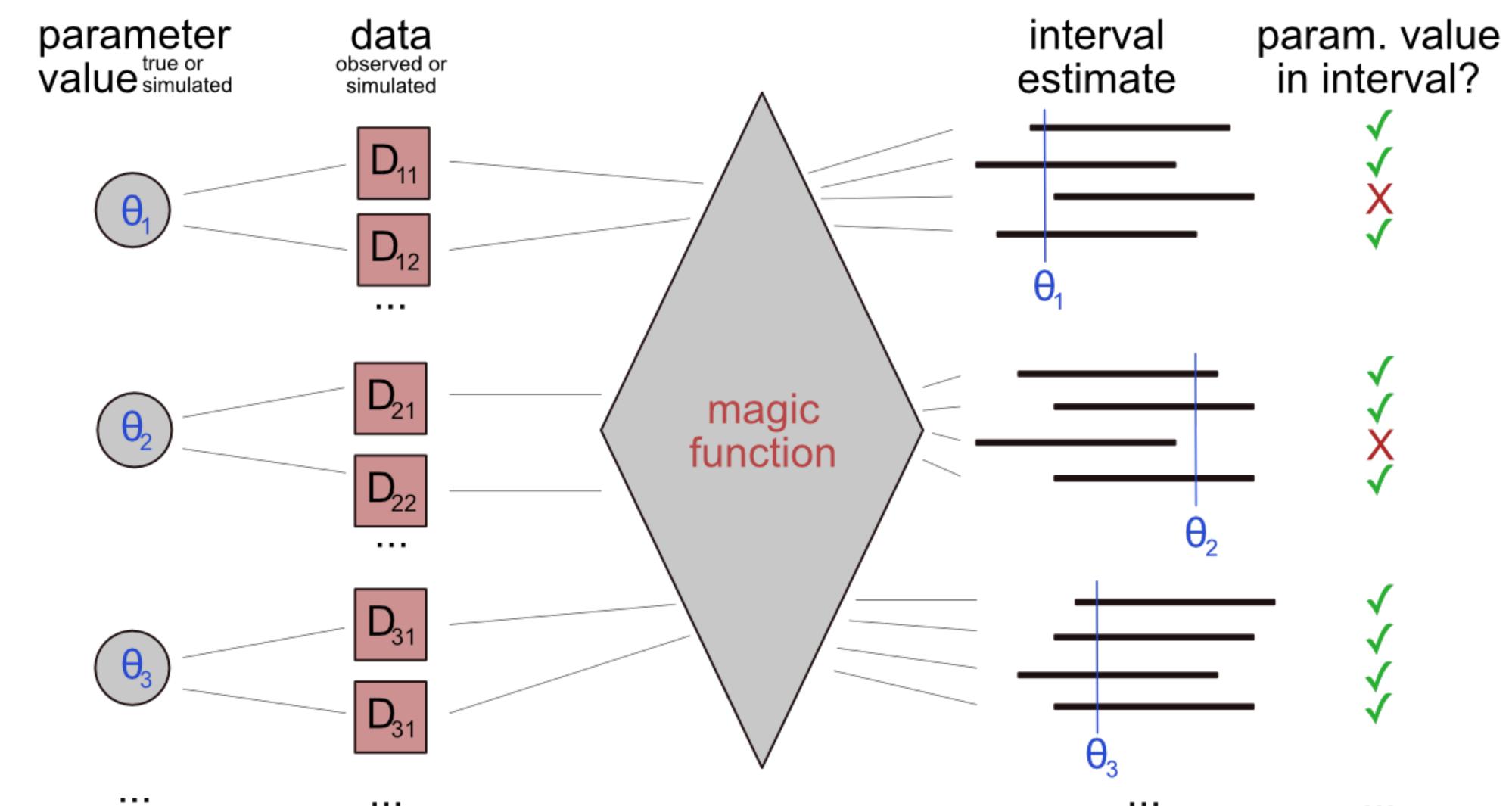
- \blacktriangleright let \mathscr{D} be the random variable describing the probability of data
- X_1 and X_n are random variables derived from \mathcal{D} via functions g_1 and g_n so that $g_{l.u}: D \mapsto \mathbb{R}$
- > a γ % confidence interval for observed data D_{obs} is the interval: $|g_l(D_{obs}), g_u(D_{obs})|$
- where functions $g_{l.u}$ are constructed so that:

$$P(X_l \le \theta_{\text{true}} \le X_u) = \frac{\gamma}{100}$$

• and where θ_{true} is the true value

CONFIDENCE INTERVAL [ALGORITHMICALLY]

...

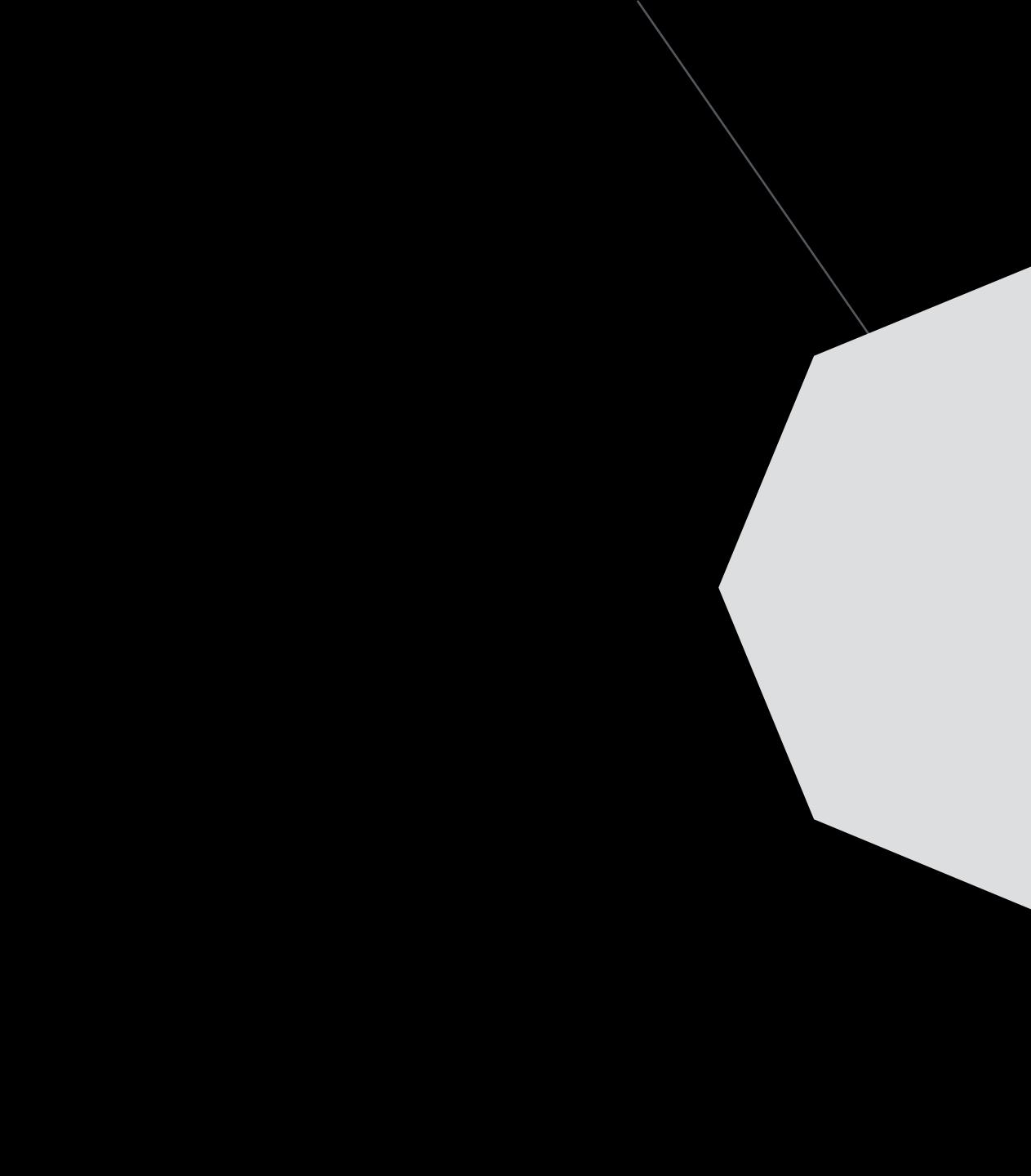


...

. . .

CONFIDENCE INTERVAL [ALGORITHMICALLY]

- **fix number of coin flips** N (not really necessary, but easier)
- suppose the true coin bias is θ_{true} (but we don't know it)
- we have a magic function $MF: k \mapsto [u_k; l_k]$
- we now sample repeatedly $k \sim \text{Binomial}(N, \theta_{\text{true}})$
- for each sample k, compute $MF(k) = [u_k; l_k]$
- *MF* gives us a γ % confidence interval if θ_{true} is inside of $MF(k) = [u_k; l_k]$ in $\gamma \%$ of the sampled ks



addressing pointvalued hypotheses with estimation

ADDRESSING POINT-VALUED HYPOTHESES [BAYES]

- $\Theta_i = \theta_i^*$ is out point-valued hypothesis
- a region of practical equivalence [ROPE] is an ϵ -region around θ_i^* : $\text{ROPE}(\theta_i^*) = [\theta_i^* - \epsilon, \theta_i^* + \epsilon]$
- for a Bayesian credible interval [l; u] for Θ_i , we:
 - accept the point-valued hypothesis iff [l; u] is contained entirely in ROPE (θ_i^*) ;
 - reject the point-valued hypothesis iff [l; u] and $ROPE(\theta_i^*)$ have no overlap;
 - withhold judgement otherwise.

ADDRESSING POINT-VALUED HYPOTHESES [FREQUENTIST]

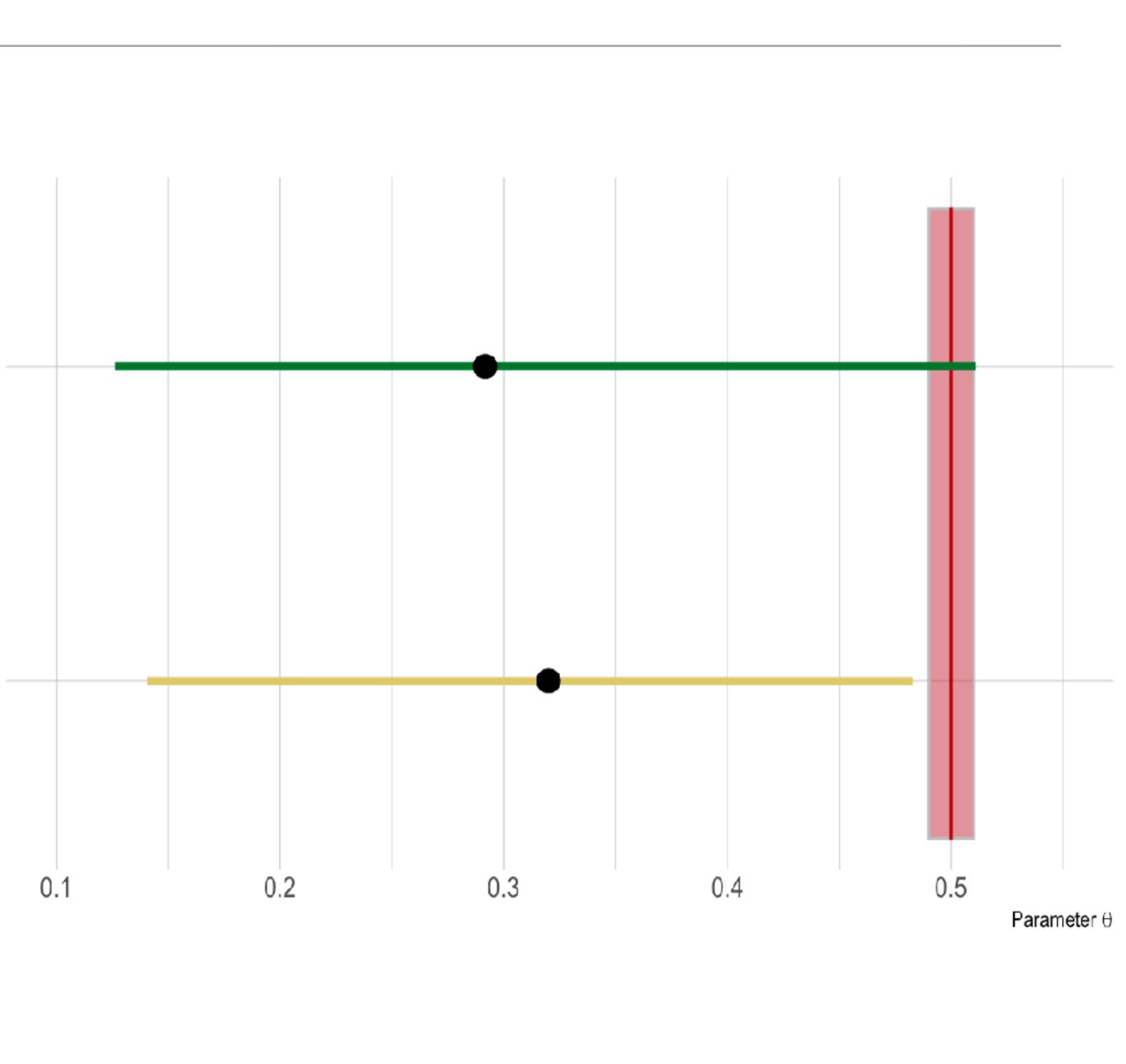
- $\Theta_i = \theta_i^*$ is out point-valued hypothesis
- we do not consider a ROPE
- for a frequentist credible interval [l; u] for Θ_i , we:
 - ▶ reject the point-valued hypothesis iff $\theta_i^* \notin [l; u]$; and
 - withhold judgement otherwise.

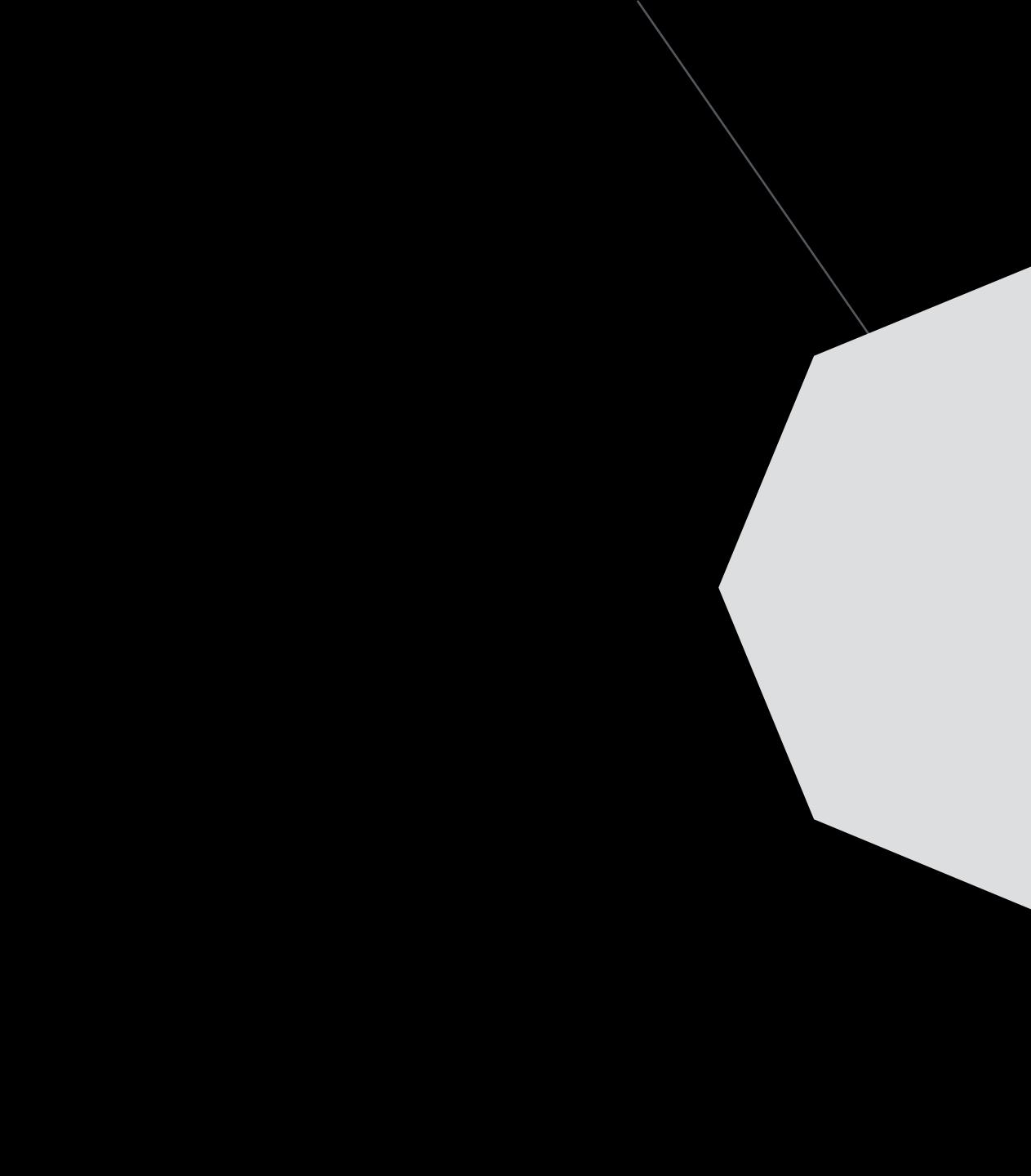
EXAMPLE

- 24/7 example, uninformative priors for Bayesian model
- point- and interval estimates:

##	#	A tibble: 2	x 4			
##		approach	lower	point	upper	
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	Bayes	0.141	0.32	0.483	
##	2	frequentist	0.126	0.292	0.511	

Bayes





<u>comparison</u>

BAYESIAN VS FREQUENTIST ESTIMATES

- For Bayesianism the full posterior is the primary object of concern; point- and interval-estimates are essentially just summary statistics for the full posterior
- for frequentists the point- and interval-estimates are the primary object of concern
- MLEs are much easier to compute but might not exist
- posteriors can be very hard to compute (long run time)

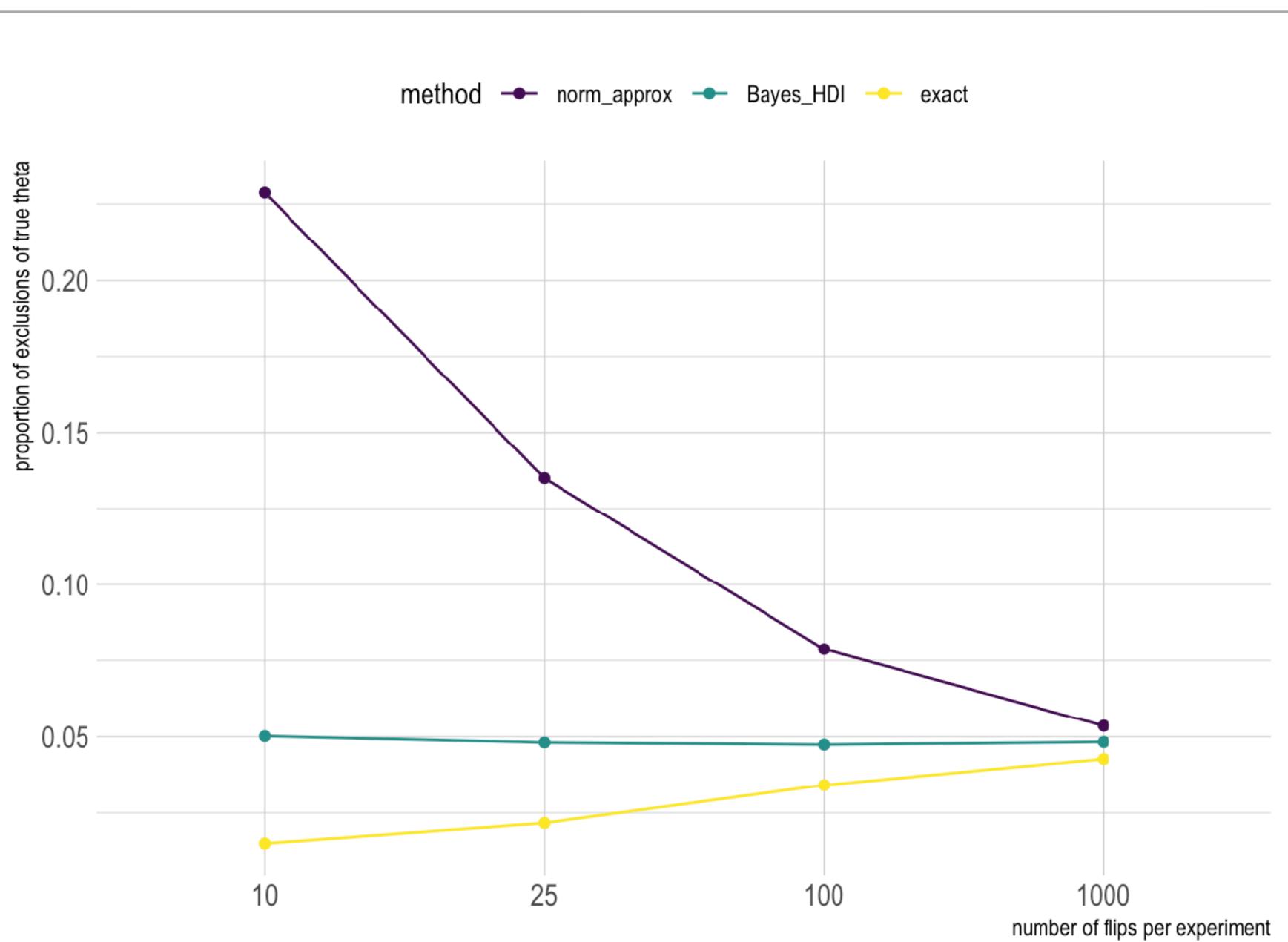
A PUZZLE ABOUT POINT-ESTIMATES

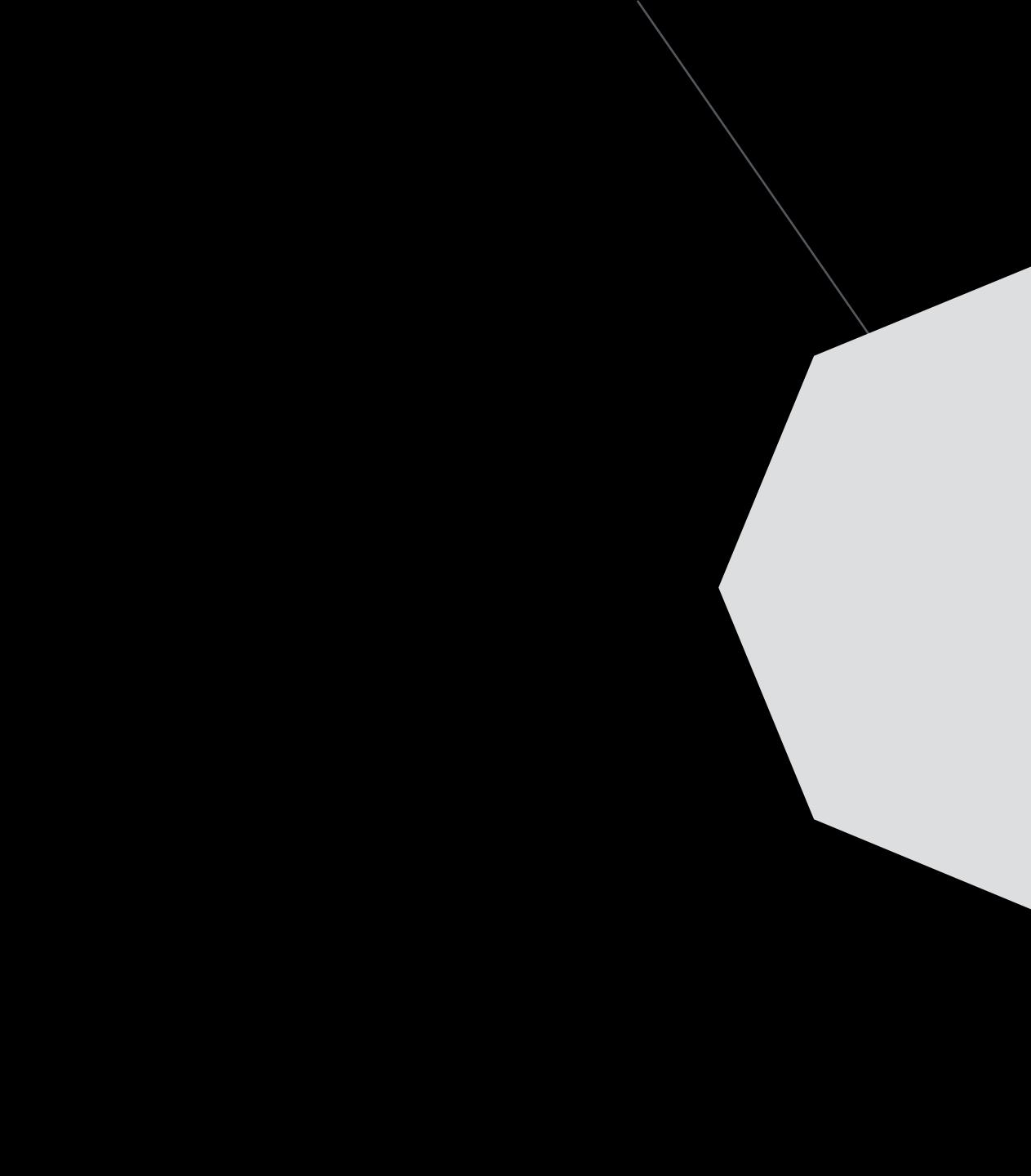
- flip a coin of unknown bias once
- suppose you see heads
- what's your best estimate of the bias?
 - $\mathbf{MLE} = 1$
 - > posterior mean (uninformative priors) = $2/_3$

SIMULATION-BASED COMPARISON OF INTERVAL-ESTIMATES

- ▶ fix $N \in \{10, 25, 100, 1000\}$
- repeatedly do:
 - sample $\theta_{\text{true}} \sim \text{Beta}(1,1)$
 - sample $k \sim \text{Binomial}(\theta_{\text{true}}, N)$
 - compute intervals for k and N
 - HDI, exact CI, approximate CI
- look at percentage that θ_{true} is included in each interval construction

RESULTS





computing estimates

INTRODUCTION TO DATA ANALYSIS

OPTIMIZING FUNCTIONS

```
# function for the negative log-likelihood of the given
# data and fixed parameter values
nll = function(y, x, beta_0, beta_1, sd) {
    # negative sigma is logically impossible
    if (sd <= 0) {return( Inf )}
    # predicted values
    yPred = beta_0 + x * beta_1
    # negative log-likelihood of each data point
    nll = -dnorm(y, mean=yPred, sd=sd, log = T)
    # sum over all observations
    sum(nll)
}</pre>
```

ι
#
#

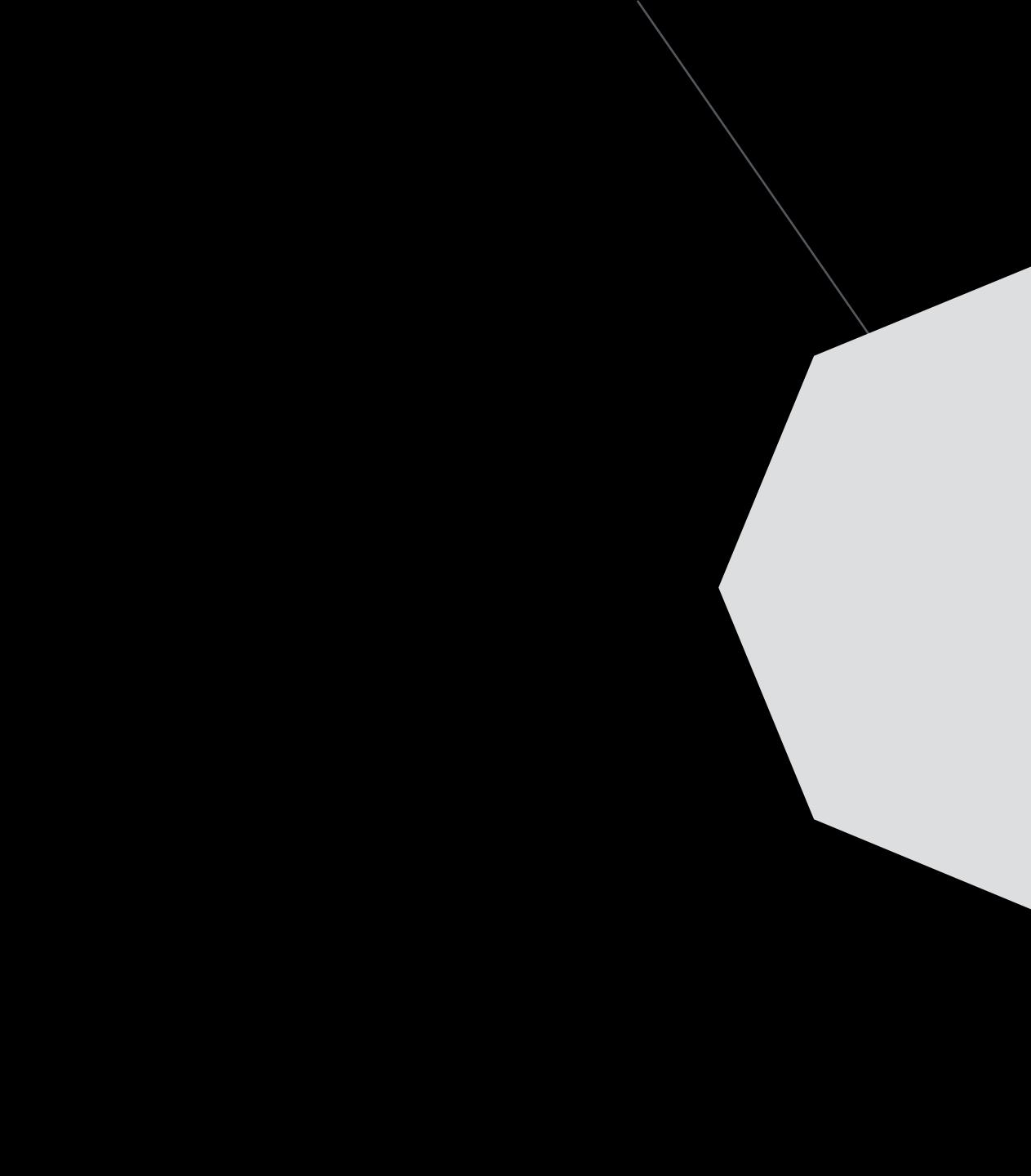
```
fit_lh = optim(
    # initial parameter values
    par = c(1.5, 0, 0.5),
    # function to optimize
    fn = function(par) {
        with(avocado_data,
            nll(average_price, total_volume_sold,
                par[1], par[2], par[3])
        )
      }
    )
    fit_lh$par
```

[1] 1.425080e+00 -2.247373e-08 3.950978e-01

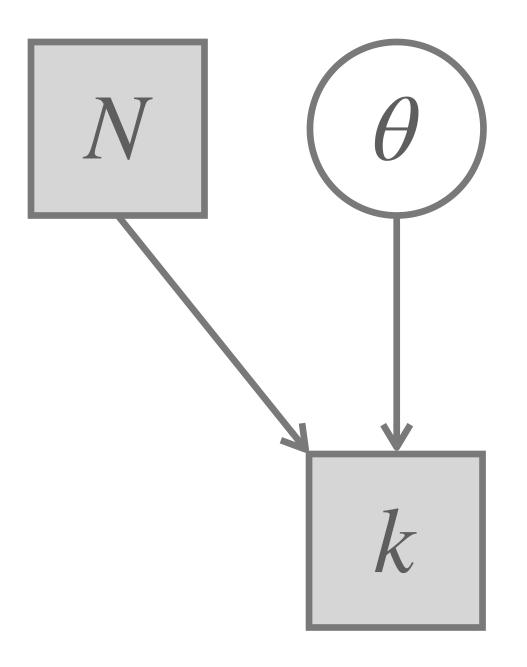
Lm(average_price ~ total_volume_sold, avocado_data)\$coef
(Intercept) total_volume_sold
1.425096e+00 -2.247455e-08

INTRODUCTION TO DATA ANALYSIS

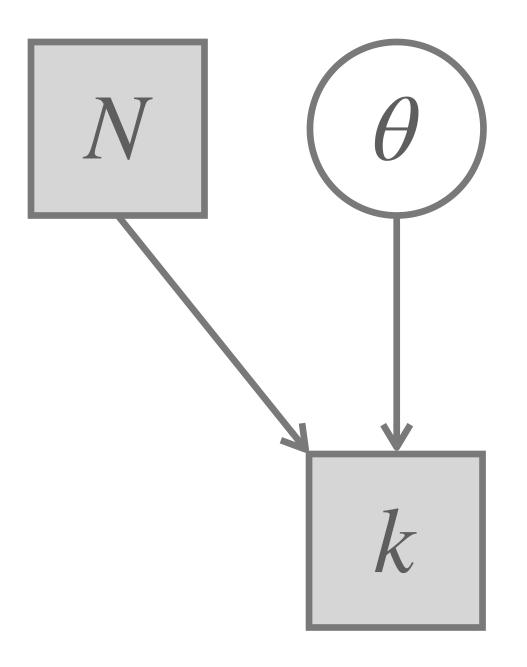
MARKOV CHAIN MONTE CARLO



probabilistic models with greta

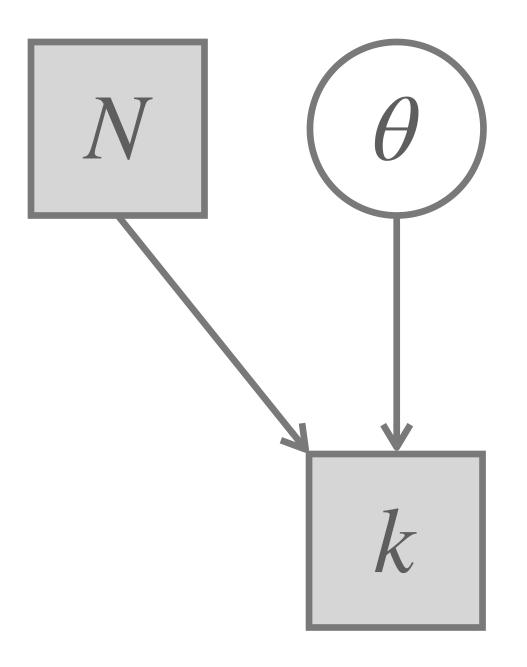


```
# greta data
k <- as_data(109)</pre>
N \ll as_data(311)
# coin bias & prior (here: uninformative)
theta <- beta(1,1)</pre>
# likelihood of data given theta
distribution(k) <- binomial(N, theta)</pre>
# declare the greta model
m <- model(theta)</pre>
# take 4 chains of 1000 samples
draws <- greta::mcmc(</pre>
  model = m,
  n_{samples} = 1000,
  warmup = 1000,
  chains = 4
```



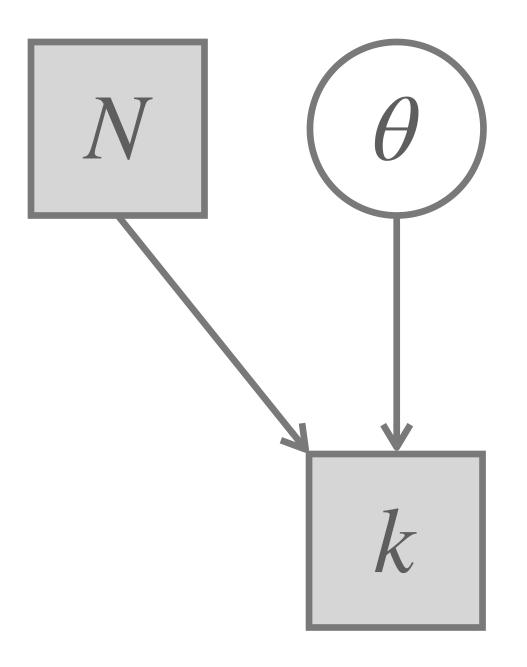
```
# cast results (type 'mcmc.list') into tidy tibble
tidy_draws = ggmcmc::ggs(draws)
tidy_draws
```

##	# A t	ibble: 4	,000 ×	< 4	
##	It	eration	Chain	Parameter	value
##		<int></int>	<int></int>	<fct></fct>	<dbl></dbl>
##	1	1	1	theta	0.343
##	2	2	1	theta	0.323
##	3	3	1	theta	0.352
##	4	4	1	theta	0.356
##	5	5	1	theta	0.356
##	6	6	1	theta	0.398
##	7	7	1	theta	0.398
##	8	8	1	theta	0.346
##	9	9	1	theta	0.405
##	10	10	1	theta	0.308
##	#	with 3,	990 mc	ore rows	

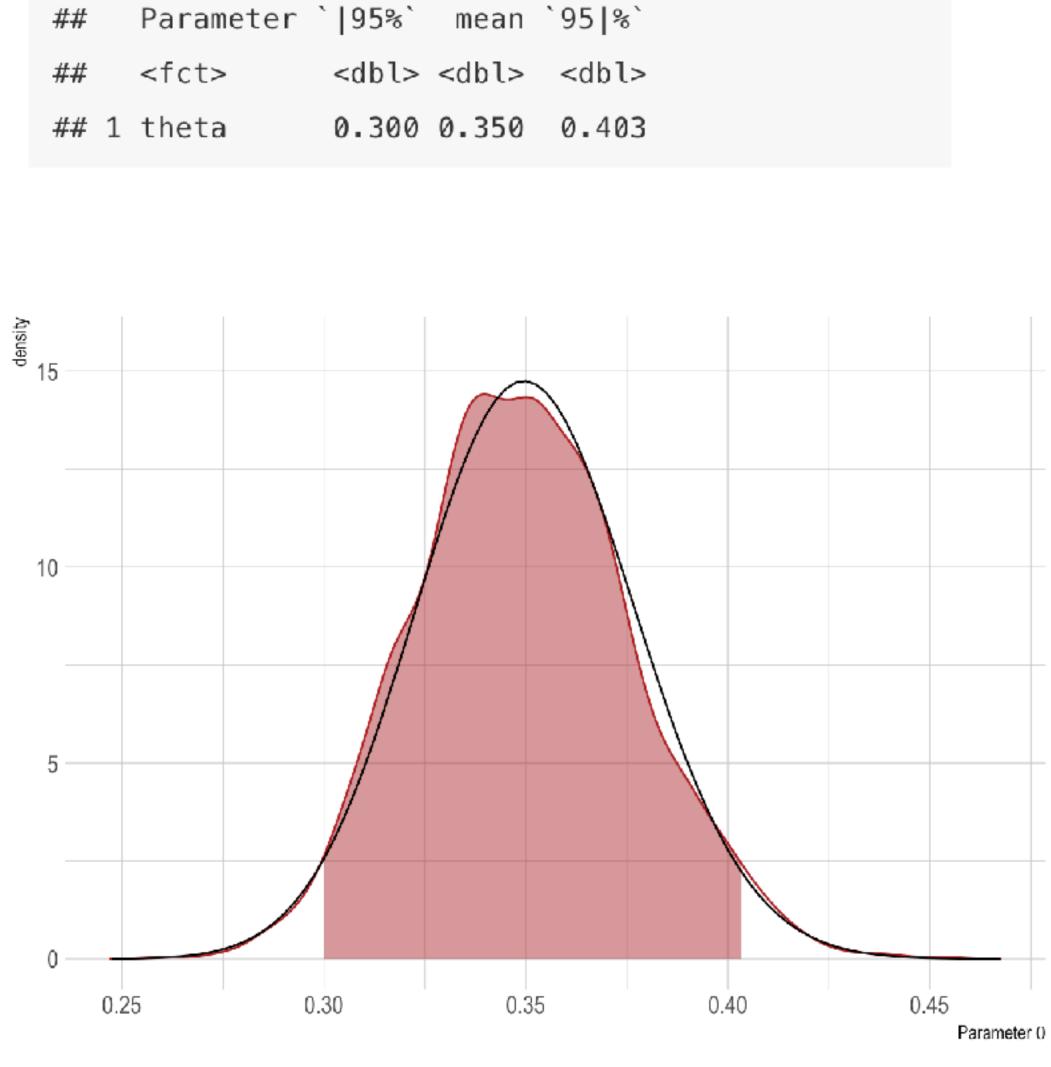


```
# obtain Bayesian point and interval estimates
Bayes_estimates <- tidy_draws %>%
  group_by(Parameter) %>%
  summarise(
    '|95%' = HDInterval::hdi(value)[1],
   mean = mean(value),
    '95|%' = HDInterval::hdi(value)[2]
Bayes_estimates
```

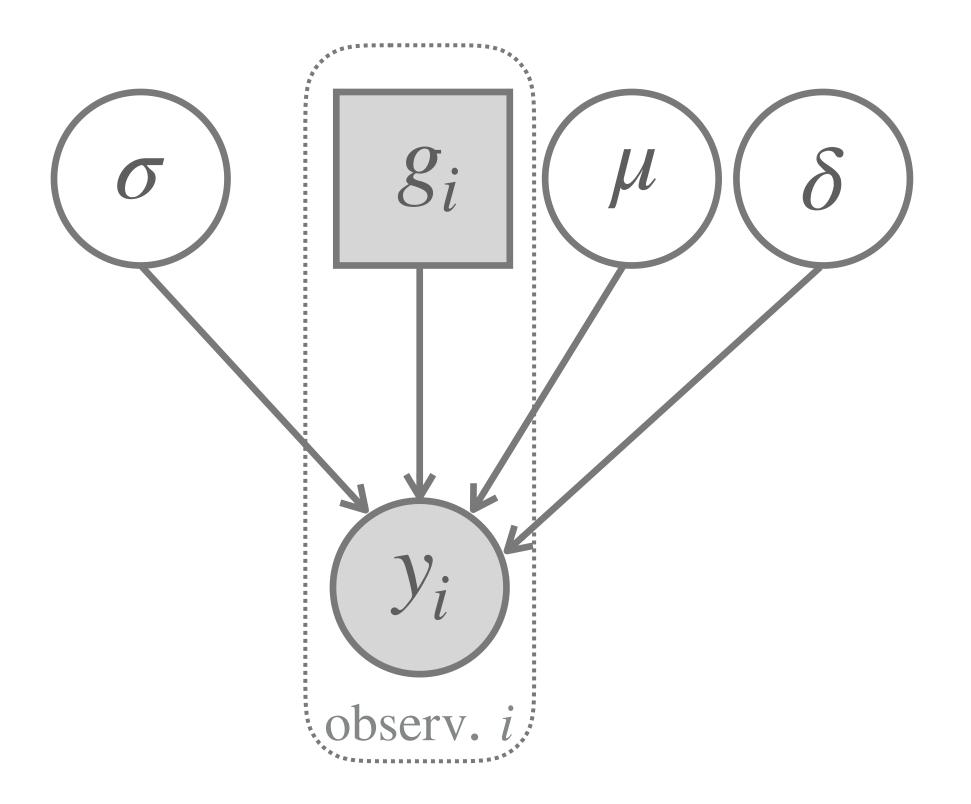
```
## # A tibble: 1 x 4
    Parameter `|95%` mean `95|%`
##
             <dbl> <dbl> <dbl>
    <fct>
##
## 1 theta
              0.300 0.350 0.403
```



## #	A tibble:	1 x 4		
##	Parameter	` 95%`	mean	`95 %`
##	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	theta	0.300	0.350	0.403



T-TEST MODEL [WITH DELTA]

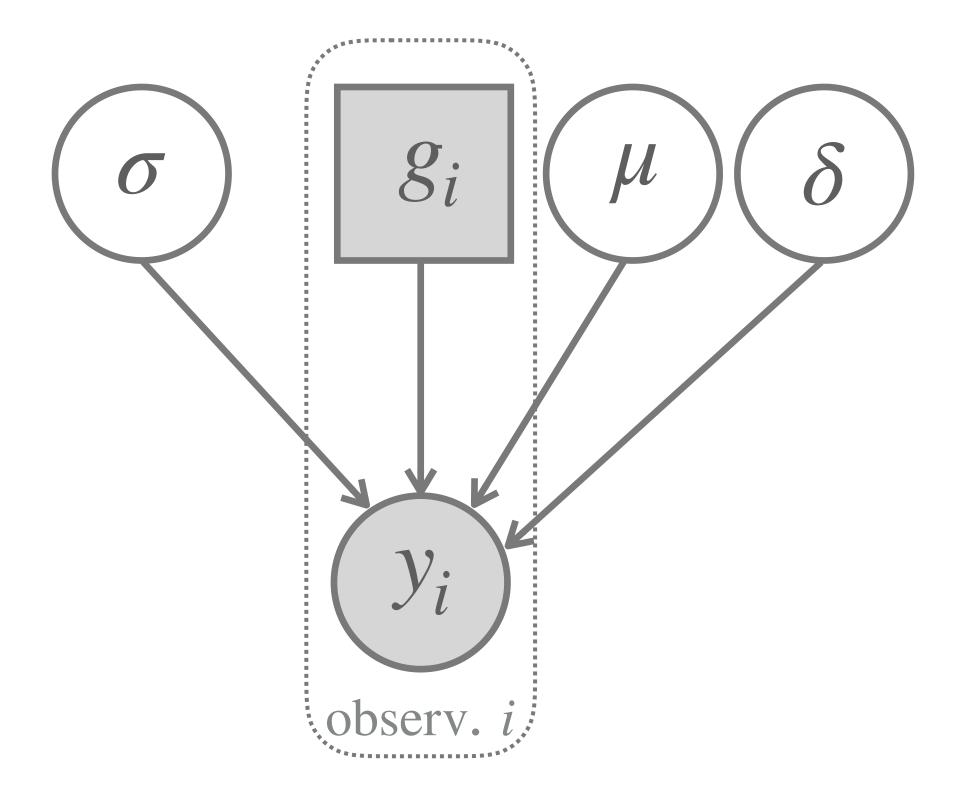


```
# isolate data vectors
RT_goNoGo <- mc_data_cleaned %>% filter(block == "goNoGo") %>% pull(RT)
RT_discrm <- mc_data_cleaned %>% filter(block == "discrimination") %>% pull(RT)
# declare as greta data arrays
y0 <- as_data(RT_goNoGo)
y1 <- as_data(RT_discrm)</pre>
```

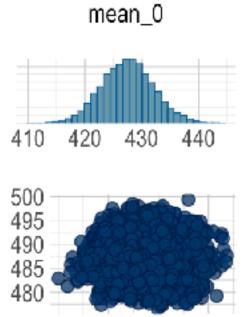
```
# priors
mean_0 <- normal(430, 50)
delta <- normal(0, 100)
sigma <- normal(100, 10, truncation = c(0, Inf))
# derived prameters
mean_1 <- mean_0 + delta
# likelihood
distribution(y0) <- normal(mean_0, sigma)
distribution(y1) <- normal(mean_1, sigma)
# model
m <- model(mean_0, mean_1, delta, sigma)## --- sampling ---
draws <- greta::mcmc(m, warmup = 4000, n_samples = 6000, thin = 2)</pre>
```



T-TEST MODEL [WITH DELTA]



##	#	A tibble:	4 x 4		
##		Parameter	` 95%`	mean	`95 %`
##		<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	delta	49.6	60.1	71.2
##	2	mean_0	419.	427.	436.
##	3	mean_1	481.	488.	494.
##	4	sigma	101.	105.	109.



410 420 430 440

