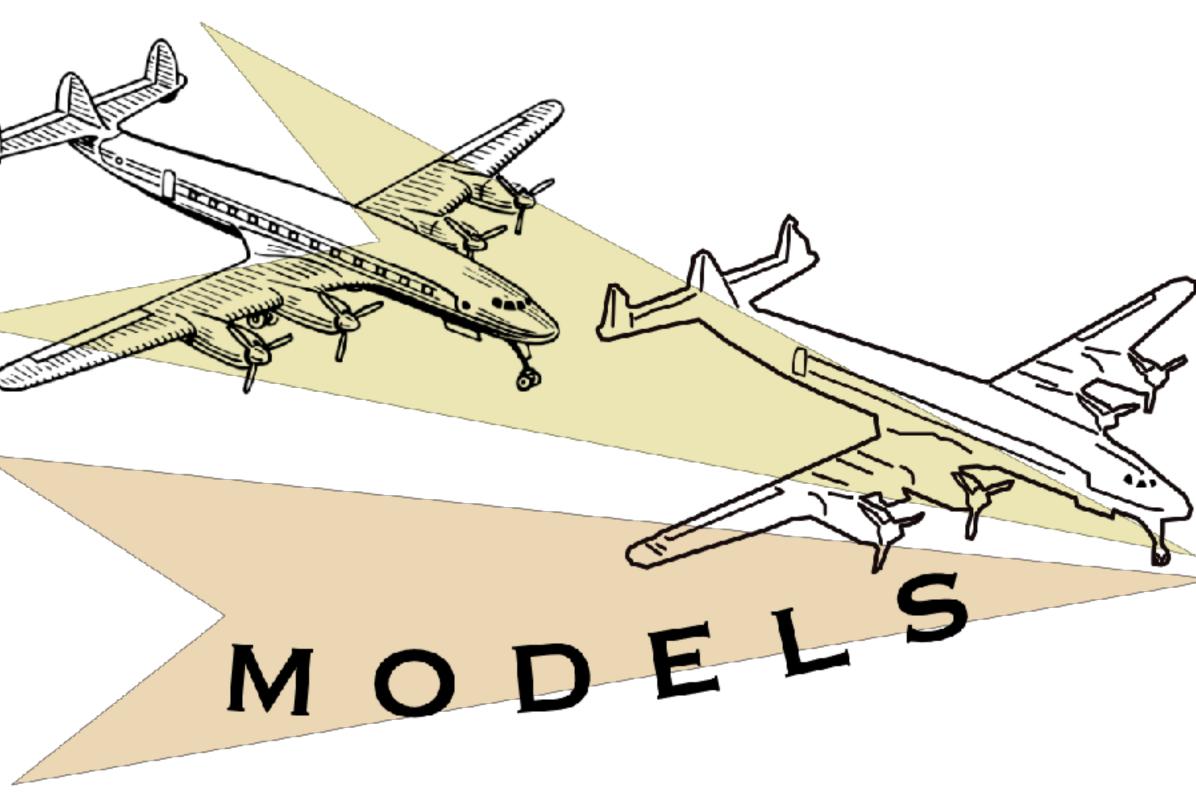
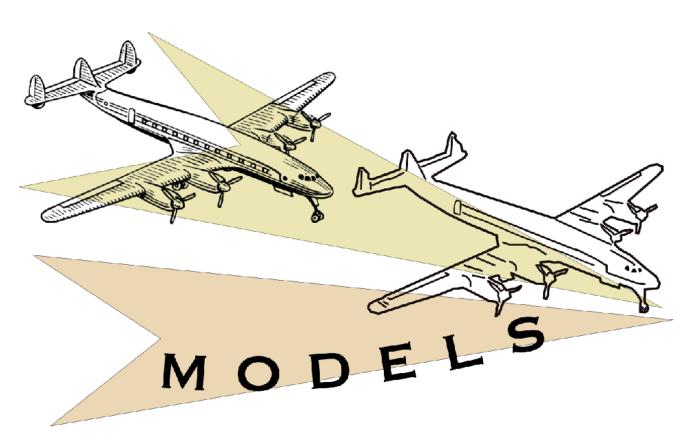
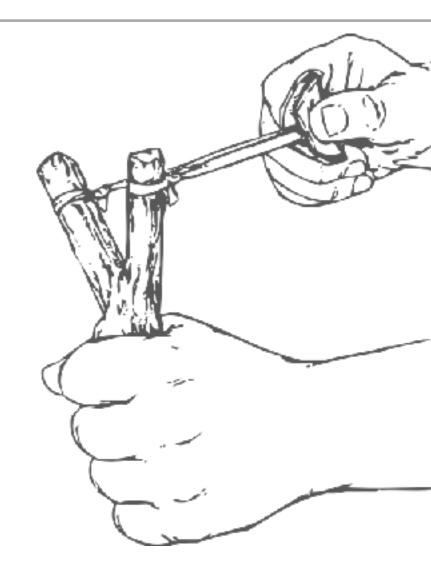
INTRODUCTION TO DATA ANALYSIS



LEARNING GOALS

- become acquainted with statistical models
- understand what parameters are and what priors can do
- meet pivotal exemplars:
 - Binomial Model, T-Test Model, Simple Linear Regression
- understand notation to communicate models
 - formulas & graphs



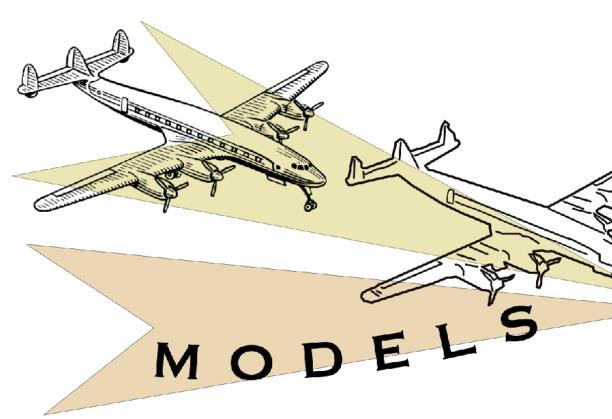


Statistical models

STATISTICAL MODELS

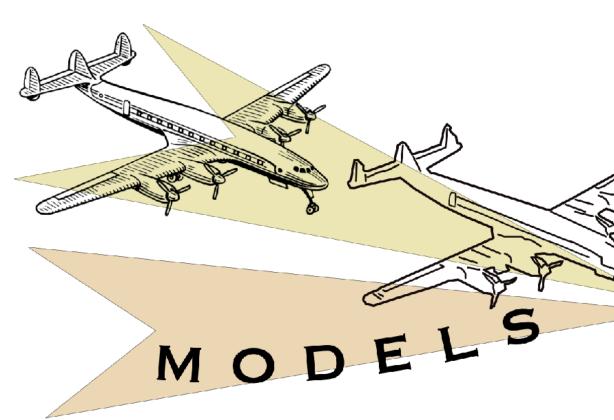
what the data is and how it might have been generated.

A statistical model is a condensed formal representation, following common conventional practices of formalization, of the assumptions we make about



PRAGMATISM IN MODELING

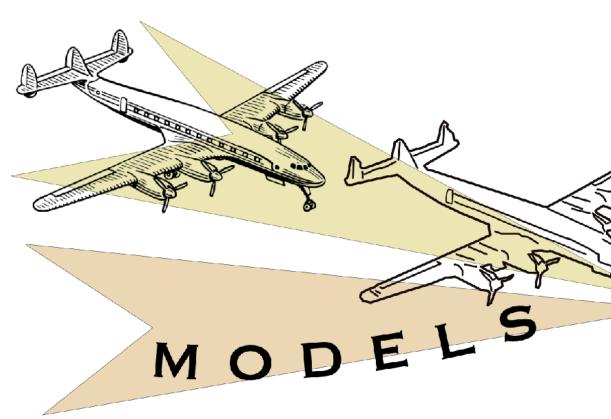
All models are wrong, but some are useful. – Box (1979)



DEFINITION

- a statistical model *M* of random process *R* generating data *D* consists of:
 - a partition into D_{IV} and D_{DV} of a subset of D
 - ► a likelihood function: $P_M(D \mid \theta)$
 - [if Bayesian] a prior: $P_M(\theta)$

cess R generating data D consists of: ubset of D

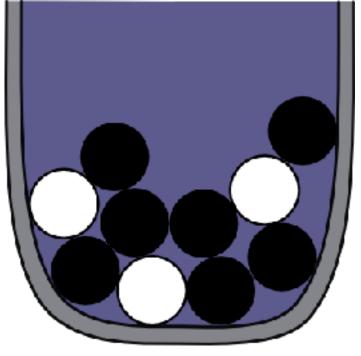


First examples

SINGLE DRAW FROM AN URN

- urn contains N = 10 balls
- unknown number $k \in \{0, 1, \dots, 10\}$ of black balls (rest white)
- Iikelihood function is uncontroversial $P_M(D = \text{black} \mid k) = \frac{k}{N}$
- possible prior:

$$P_M(k=i) = \frac{1}{11}$$
, for all $i \in \{$



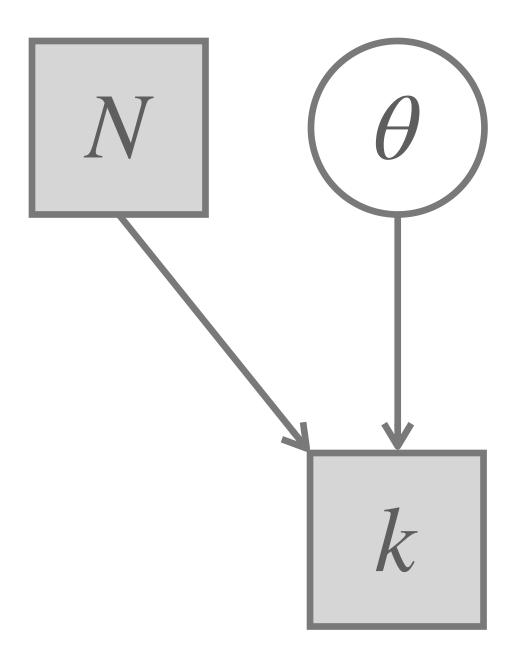
one out of eleven possible urns

$\{0, 1, \dots, 10\}$

Example modes

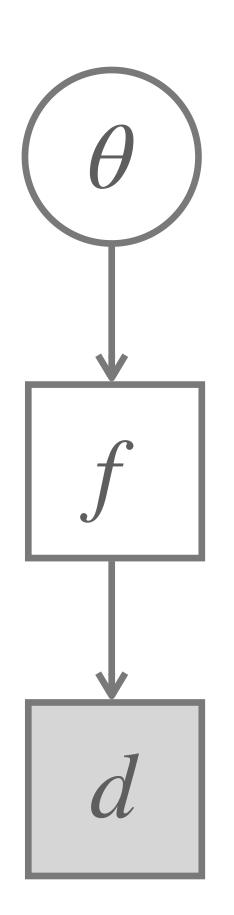
INTRODUCTION TO DATA ANALYSIS

BINOMIAL MODEL



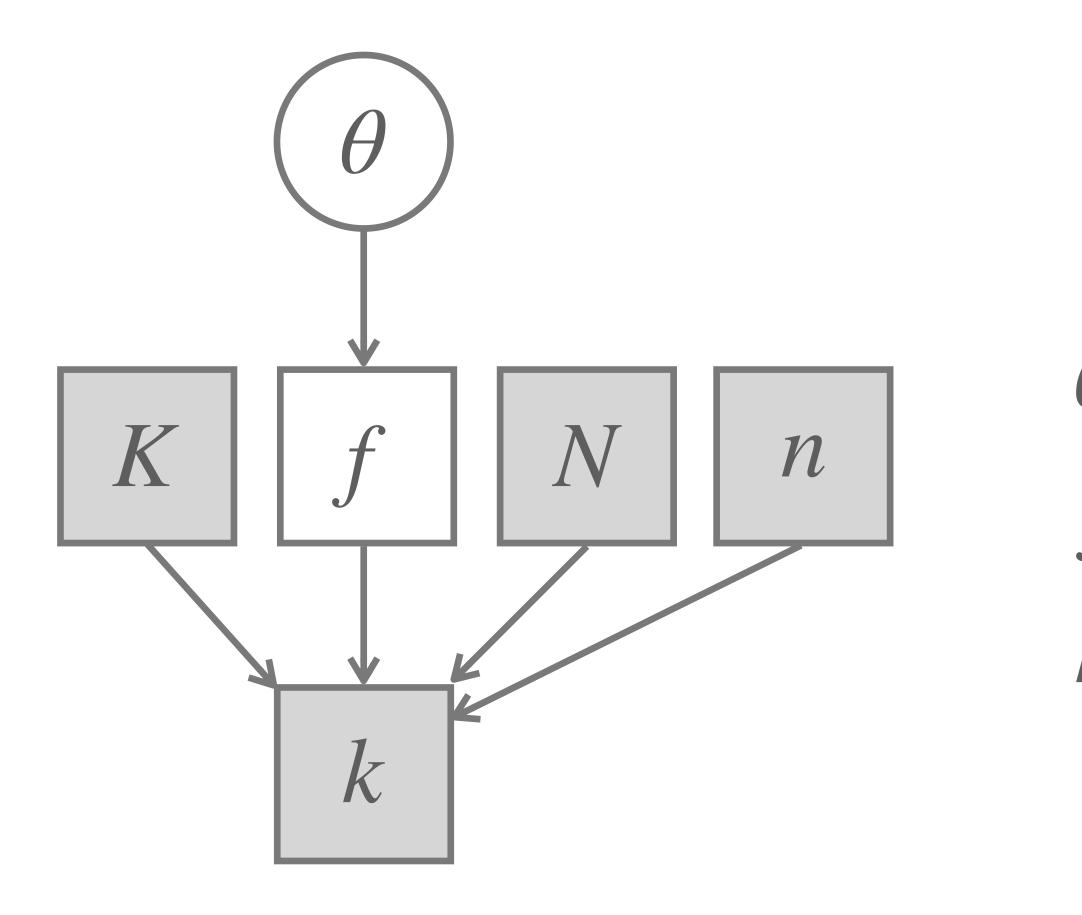
$\theta \sim \text{Beta}(...)$ $k \sim \text{Binomial}(\theta, N)$

FLIP-AND-DRAW



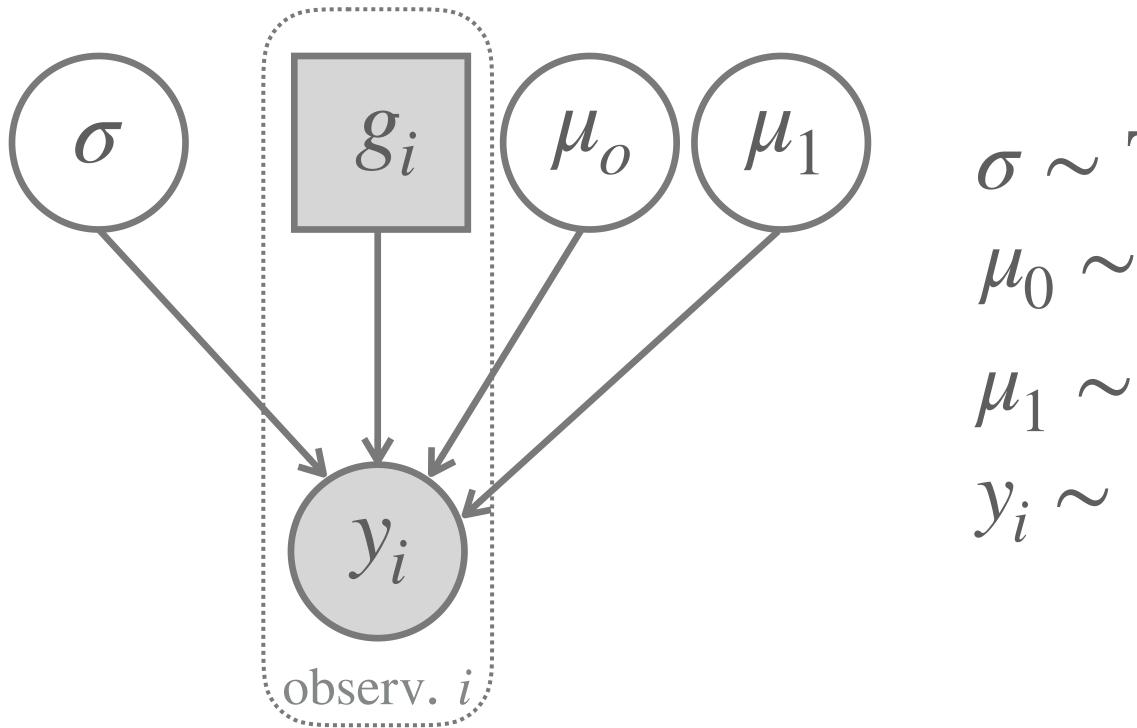
$\theta \sim \text{Beta}(...)$ $f \sim \text{Bernoulli}(\theta)$ $d \sim \text{Categorical}(\overrightarrow{p_f})$

FLIP-AND-DRAW-HYPERGEOMETRIC



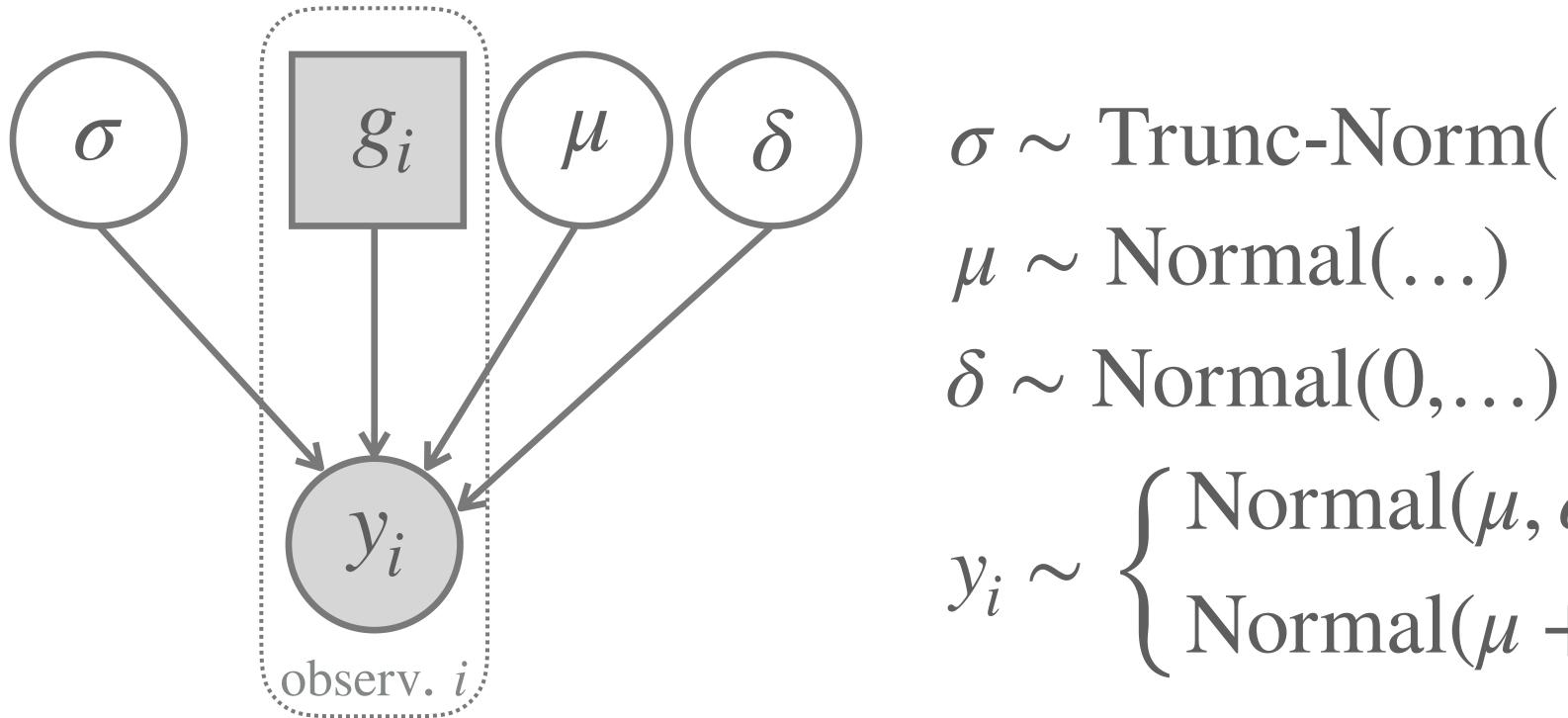
- $\theta \sim \text{Beta}(...)$
- $f \sim \text{Bernoulli}(\theta)$
- $k \sim \text{Hypergeometric}(n, N, K_f)$

T-TEST MODEL [TWO UNCOUPLED MEANS]



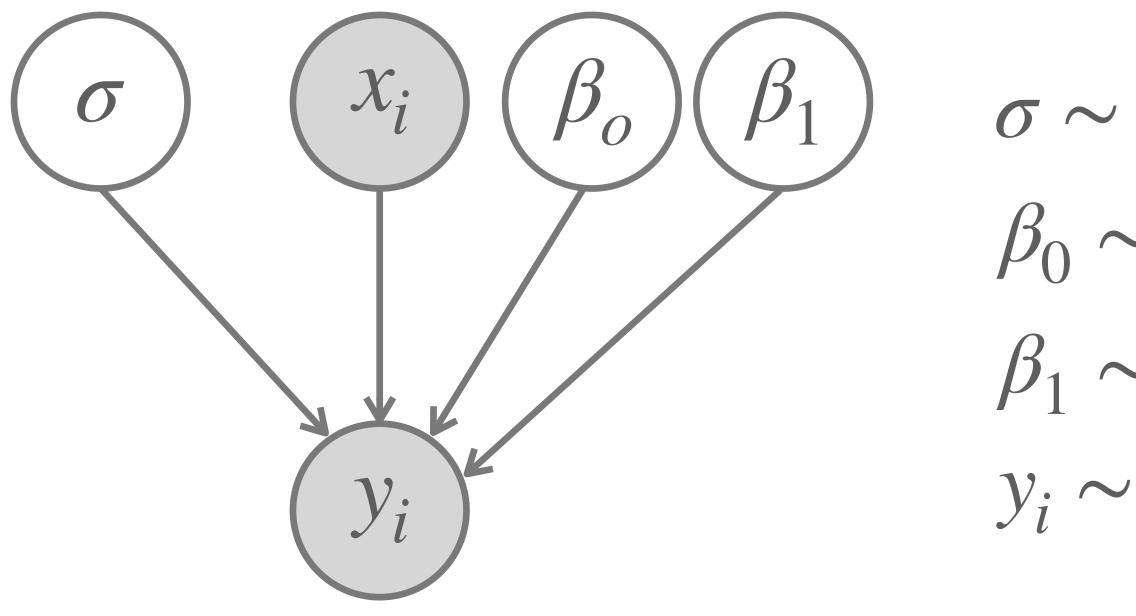
- $\sigma \sim \text{Trunc-Norm}(..., \text{lower} = 0)$ $\mu_0 \sim \text{Normal}(...)$
- $\mu_1 \sim \text{Normal}(...)$ $y_i \sim \text{Normal}(\mu_{g_i}, \sigma)$

T-TEST MODEL [WITH DIFFERENCE BETWEEN MEANS]



- $\sigma \sim \text{Trunc-Norm}(..., \text{lower} = 0)$ $\mu \sim \text{Normal}(...)$
- $y_i \sim \begin{cases} \text{Normal}(\mu, \sigma) & \text{if } g_i = 0\\ \text{Normal}(\mu + \delta, \sigma) & \text{if } g_i = 1 \end{cases}$

SIMPLE LINEAR REGRESSION MODEL

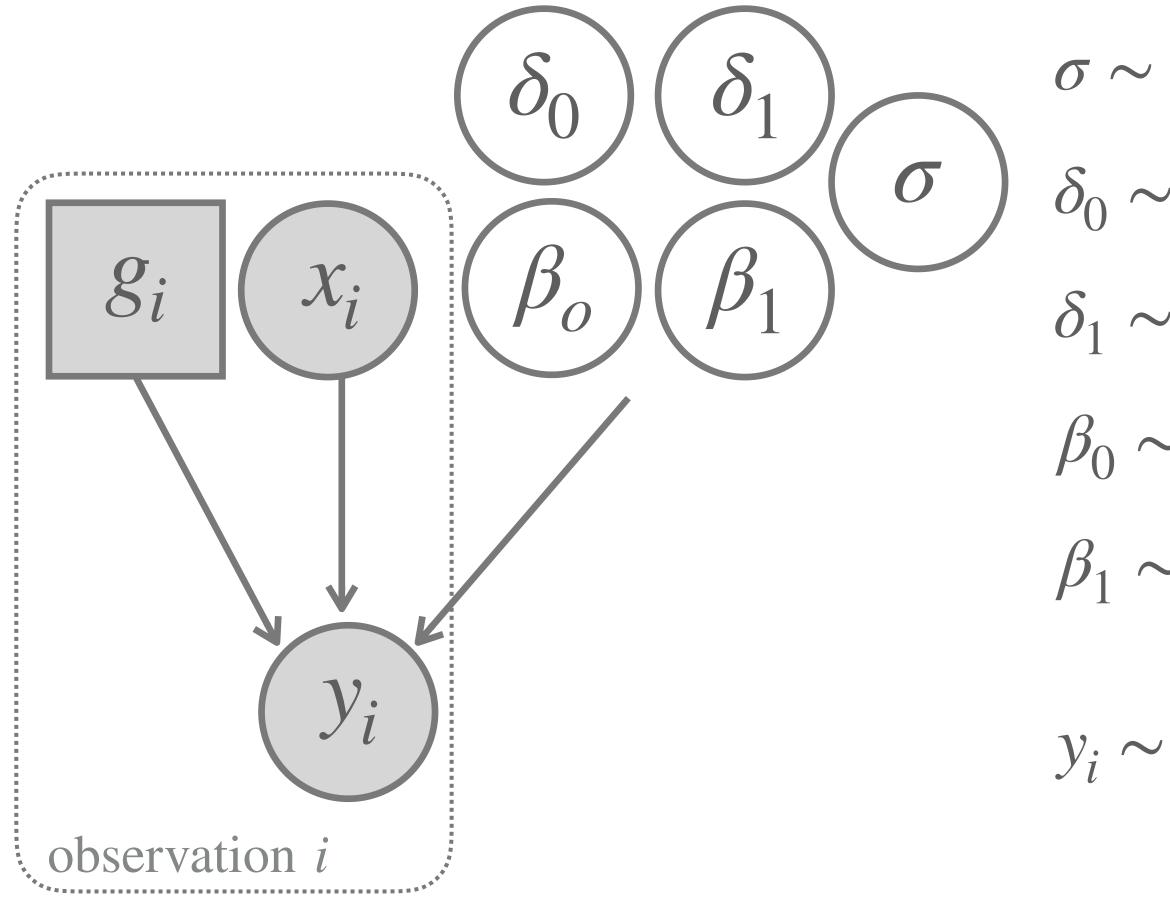


$\sigma \sim \text{Trunc-Norm}(...)$

- $\beta_0 \sim \text{Student-t}(\ldots)$
- $\beta_1 \sim \text{Student-t}(...)$
- $y_i \sim \text{Normal}(\beta_0 + \beta_1 x_i, \sigma)$

INTRODUCTION TO DATA ANALYSIS

LINEAR REGRESSION WITH TWO GROUPS



- $\sigma \sim \text{Trunc-Norm}(...)$
- $\delta_0 \sim \text{Student-T}(\mu = 0,...)$
- $\delta_1 \sim \text{Student-T}(\mu = 0,...)$
- $\beta_0 \sim \text{Student-t}(...)$
- $\beta_1 \sim \text{Student-t}(\ldots)$

 $y_i \sim \begin{cases} \text{Normal}(\beta_0 + \beta_1 x_i, \sigma) & \text{if } g_i = 0\\ \text{Normal}(\beta_0 + \delta_0 + (\beta_1 + \delta_0) x_i, \sigma) & \text{if } g_i = 1 \end{cases}$

