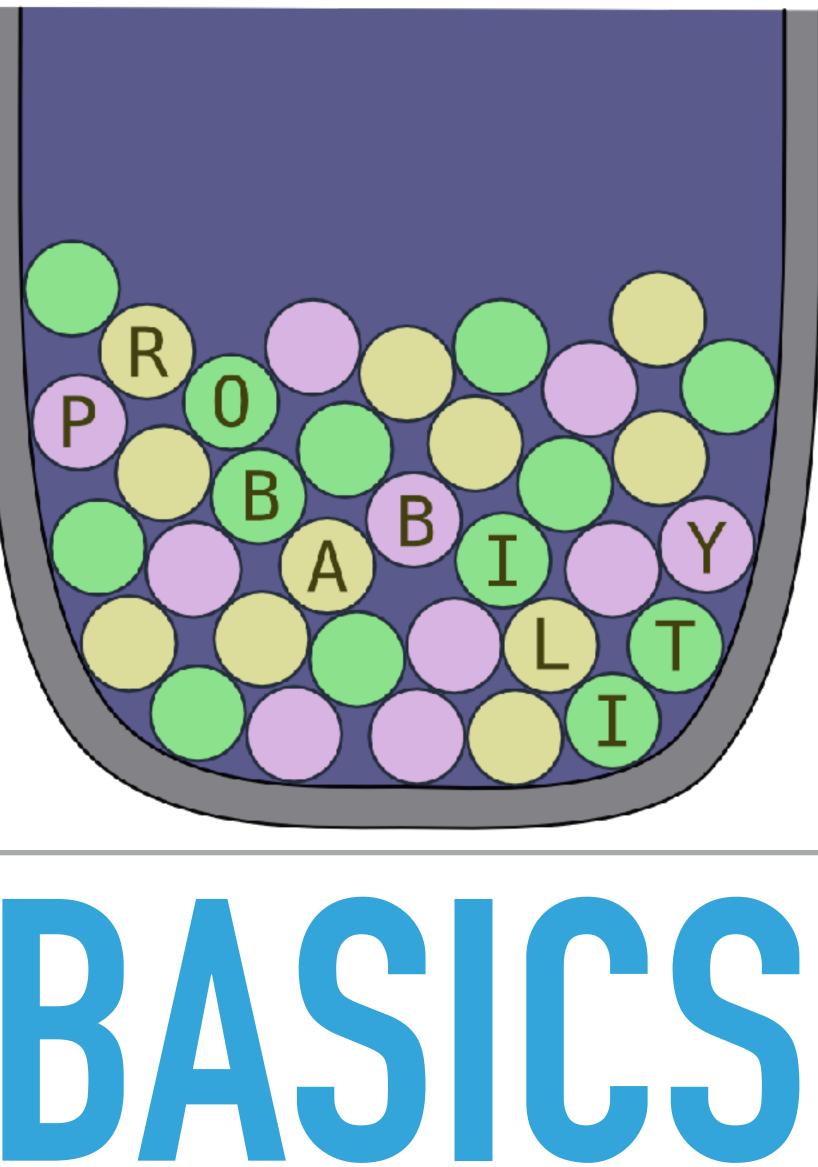
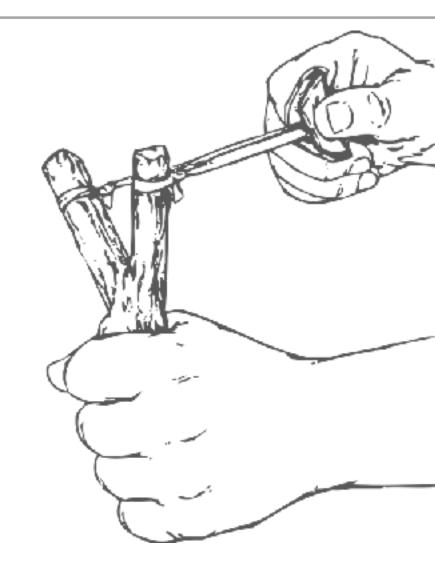
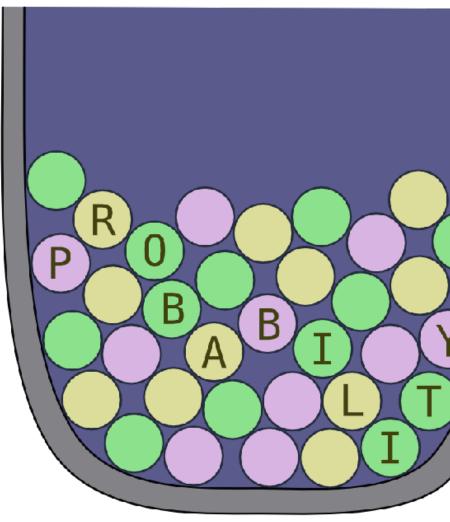
INTRODUCTION TO DATA ANALYSIS **PROBABILITY BASICS**

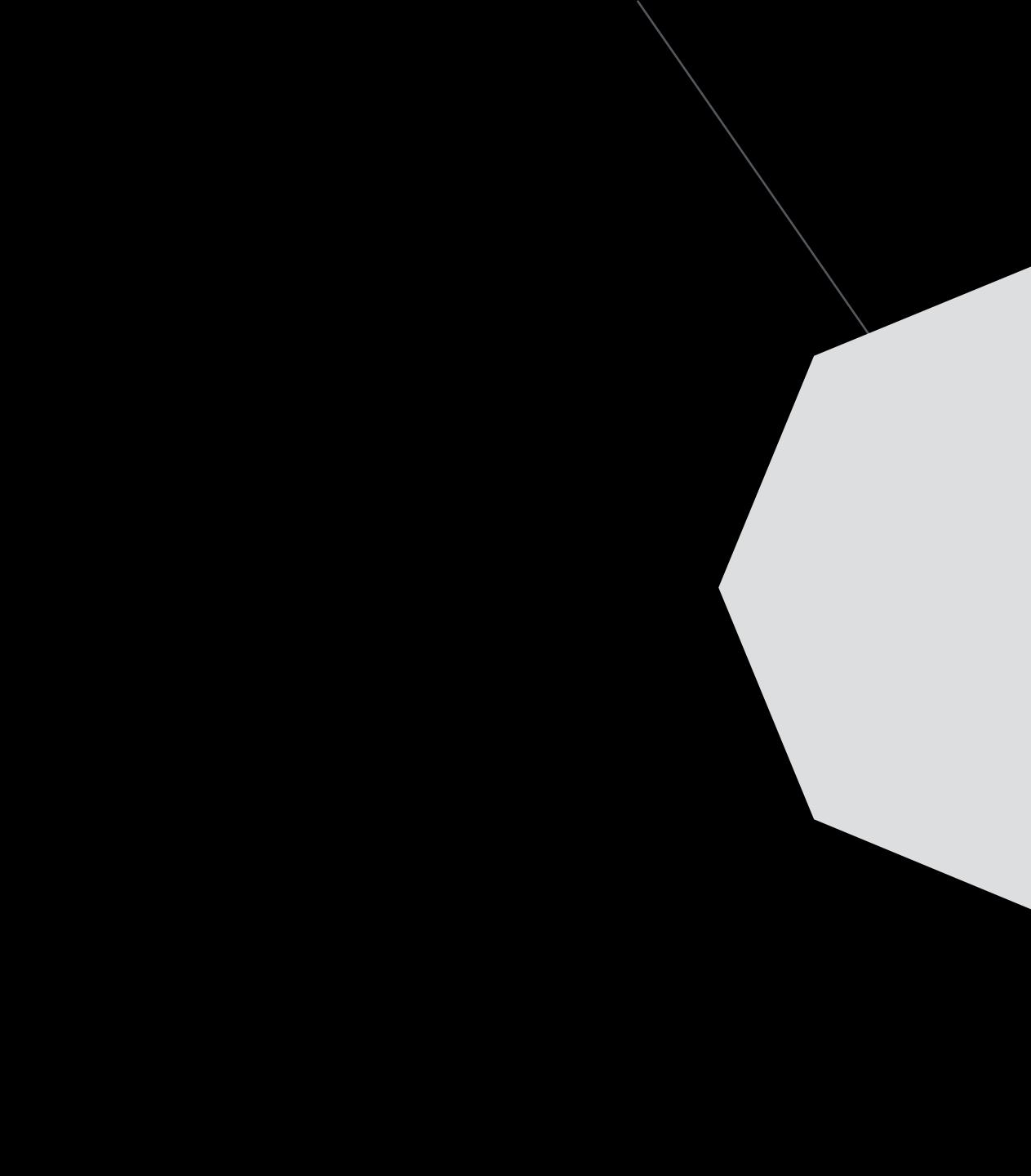


LEARNING GOALS

- become familiar with the notion of probability
 - axiomatic definition & interpretation
 - joint, marginal & conditional probability
- Bayes rule
- random variables
- probability distributions in R
- probability distributions as approximated by samples







Probability

ELEMENTARY OUTCOMES AND EVENTS

- a random process has elementary outcomes $\Omega = \{\omega_1, \omega_2, ...\}$
 - elementary outcomes are mutually exclusive
 - $\boldsymbol{\Sigma}$ $\boldsymbol{\Omega}$ exhausts the space of possibilities

Example. The set of elementary outcomes of a single coin flip is $\Omega_{\text{coin flip}} = \{\text{heads}, \text{tails}\}$. The elementary outcomes of

• any $A \subseteq \Omega$ is an event

- example "rolling an odd number" $A = \{ \Box, \Box, \Box \}$

standard set-theoretic notation for negation, conjunction, disjunction etc.

PROBABILITY DISTRIBUTION

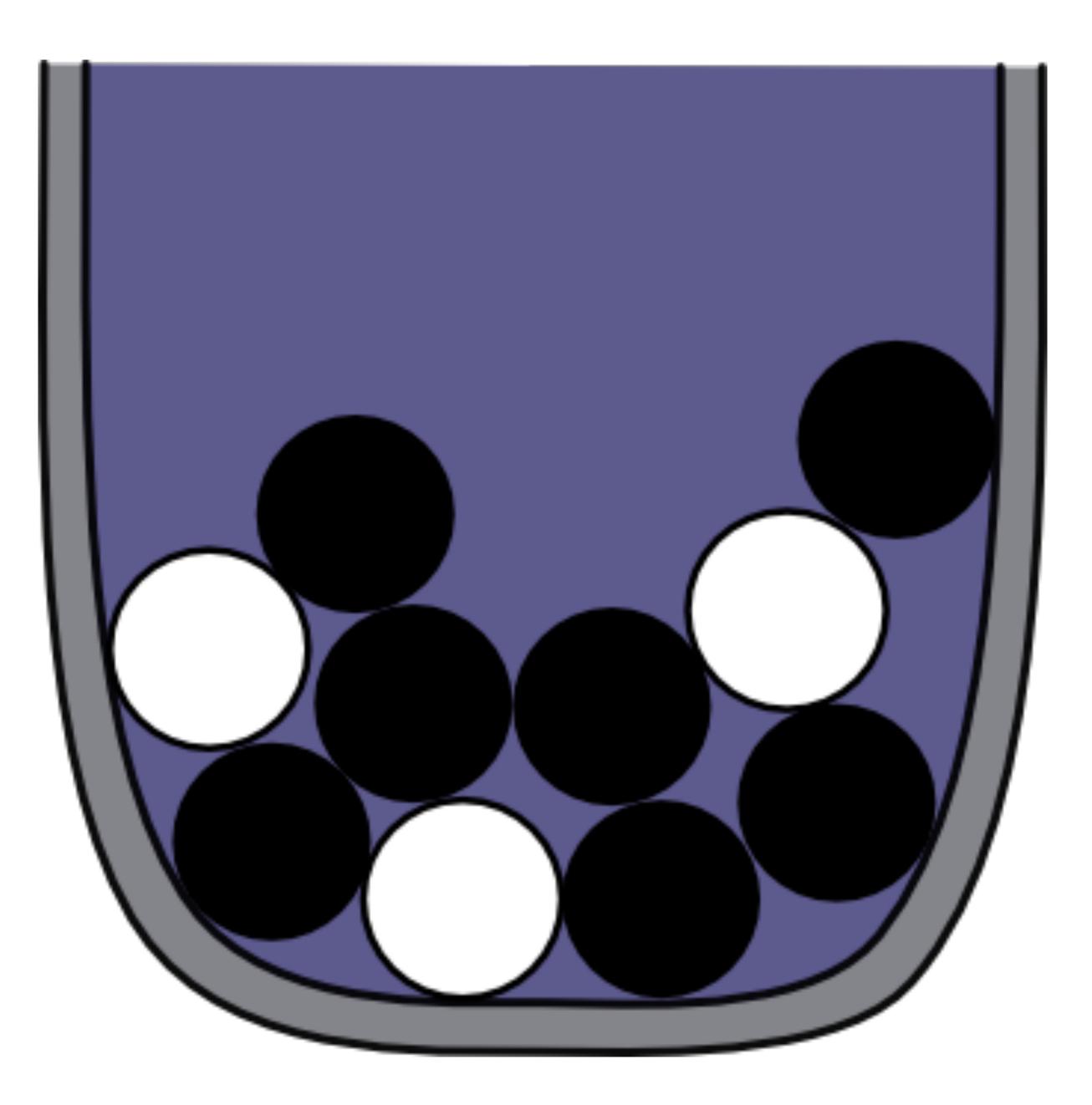
A probability distribution P over Ω is a function $P: \mathfrak{P}(\Omega) \to \mathbb{R}$ that assigns to all events $A\subseteq \Omega$ a real number (from the unit interval, see A1 below), such that the following (so-called Kolmogorov axioms) are satisfied:

A1. $0 \le P(A) \le 1$ A2. $P(\Omega) = 1$ A3. $P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2)$ A_1, A_2, A_3, \ldots are mutually exclusive

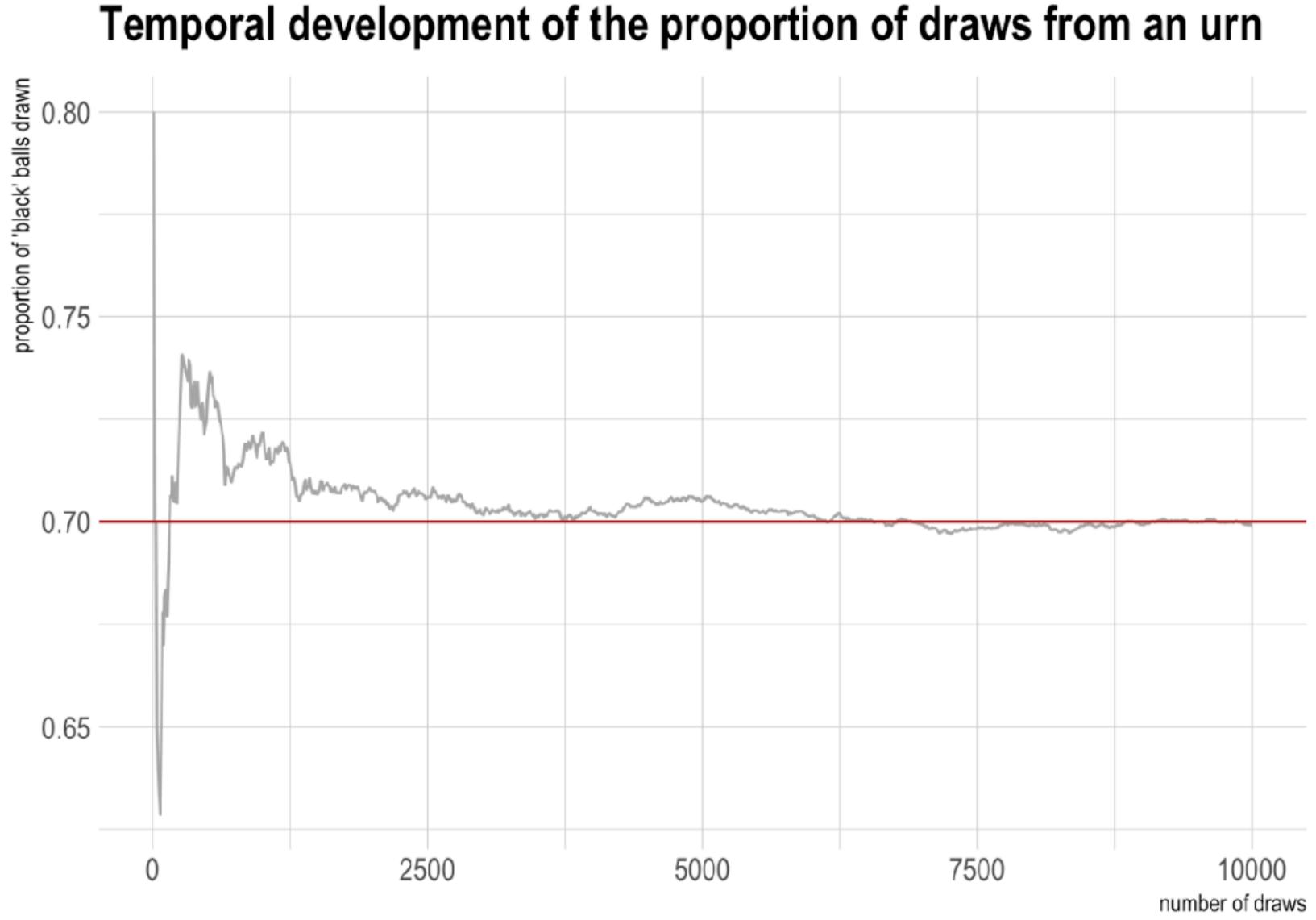
$$)+P(A_{3})+\ldots$$
 whenever

INTERPRETATIONS OF PROBABILITY

- Frequentist: probabilities are generalizations of intuitions/facts about frequencies of events in repeated executions of a random event.
- Subjectivist: probabilities are subjective beliefs by a rational agent who is uncertain about the outcome of a random event.
- Realist: probabilities are a property of an intrinsically random world.



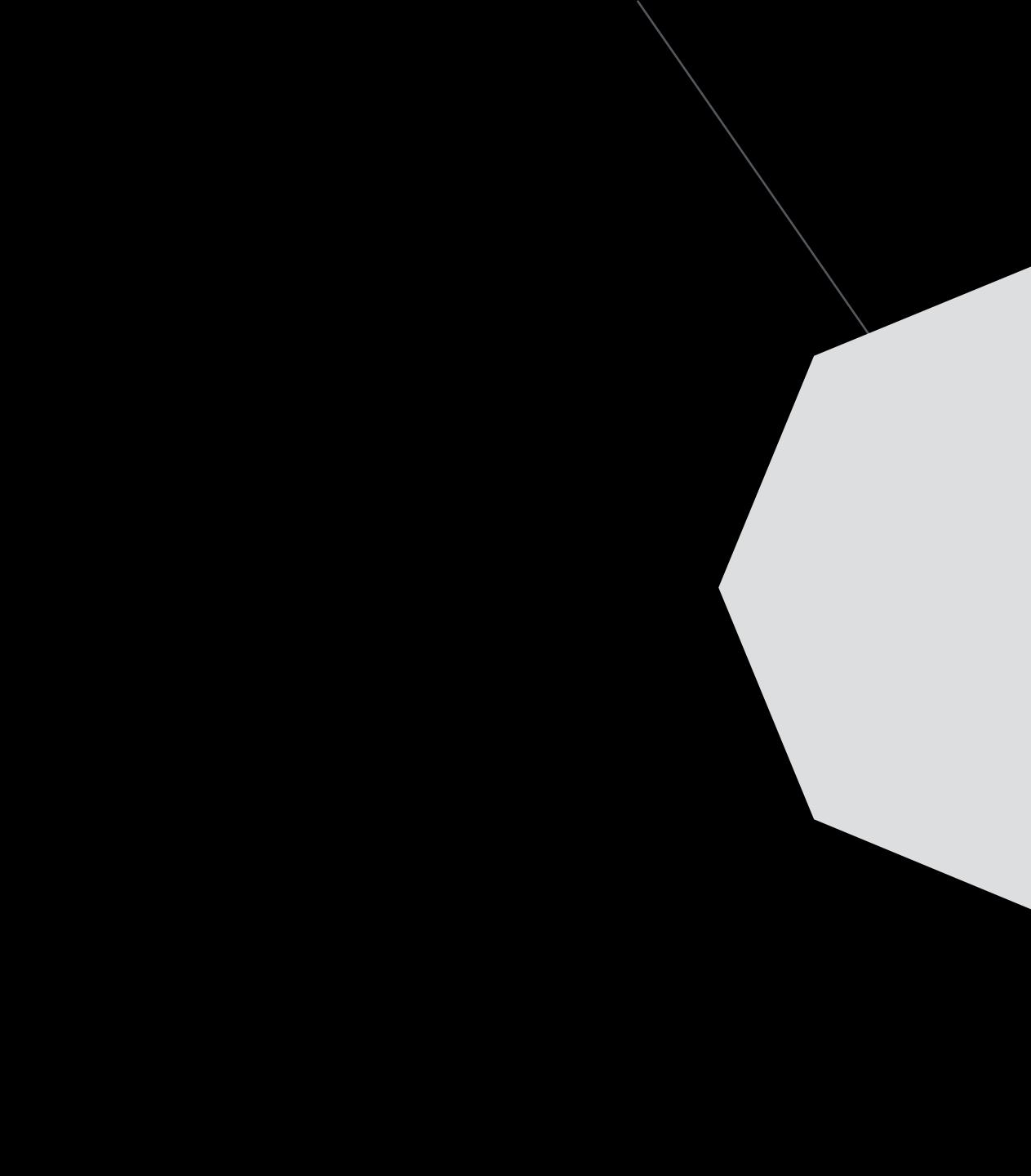
INTRODUCTION TO DATA ANALYSIS



PROBABILITY DISTRIBUTIONS AS SAMPLES

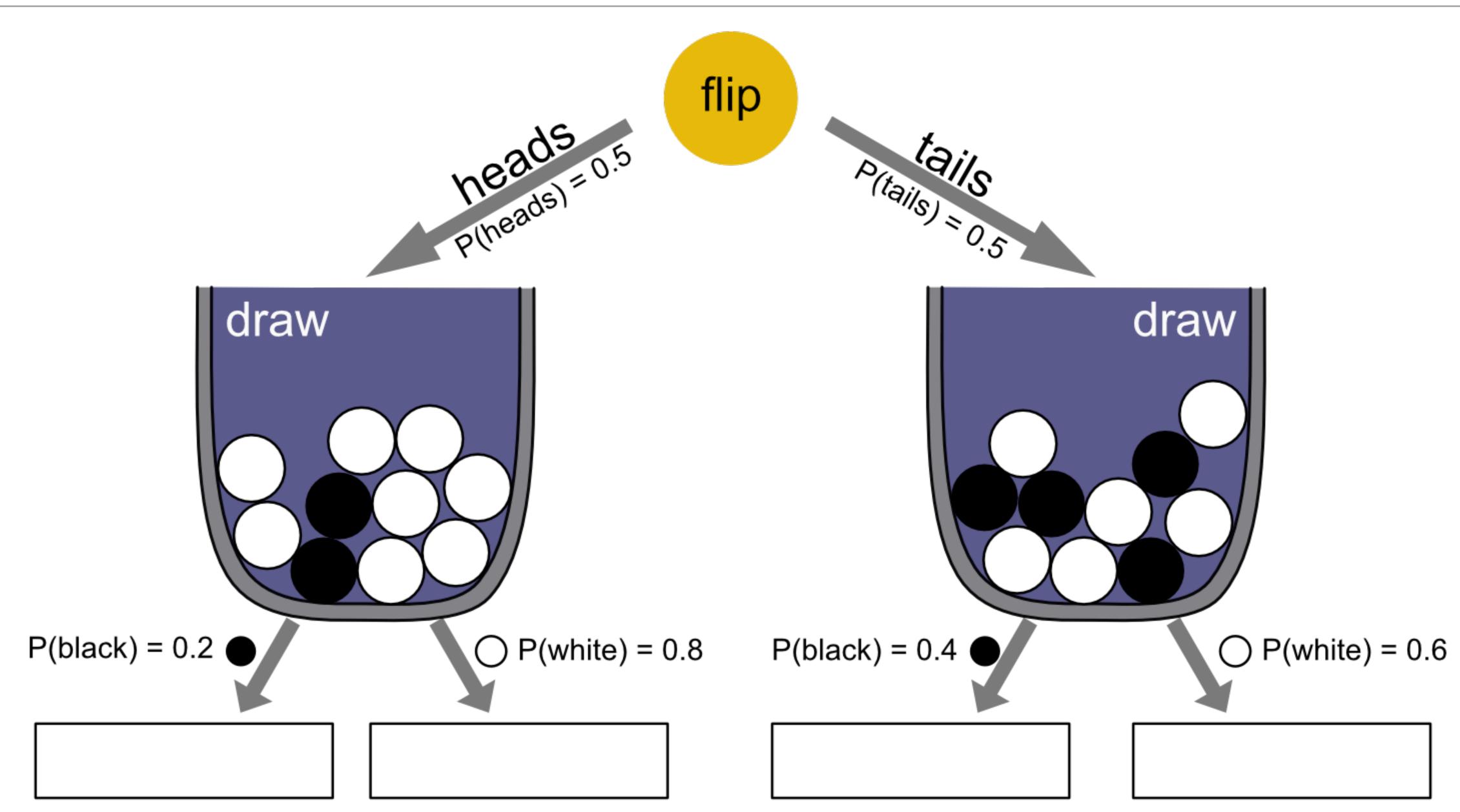
- probability distribution by either:
 - a large set of representative samples; or
 - > an oracle that returns a sample if needed.

No matter our preferred metaphysical interpretation, we can approximate a



Structured events

INTRODUCTION TO DATA ANALYSIS



JOINT PROBABILITY DISTRIBUTIONS

- Structured elementary outcomes: $\Omega_{flip-\&-draw} = \Omega_{flip} \times \Omega_{draw}$
 - shorthand notation P(heads, black) instead of $P(\langle \text{heads}, \text{black}))$

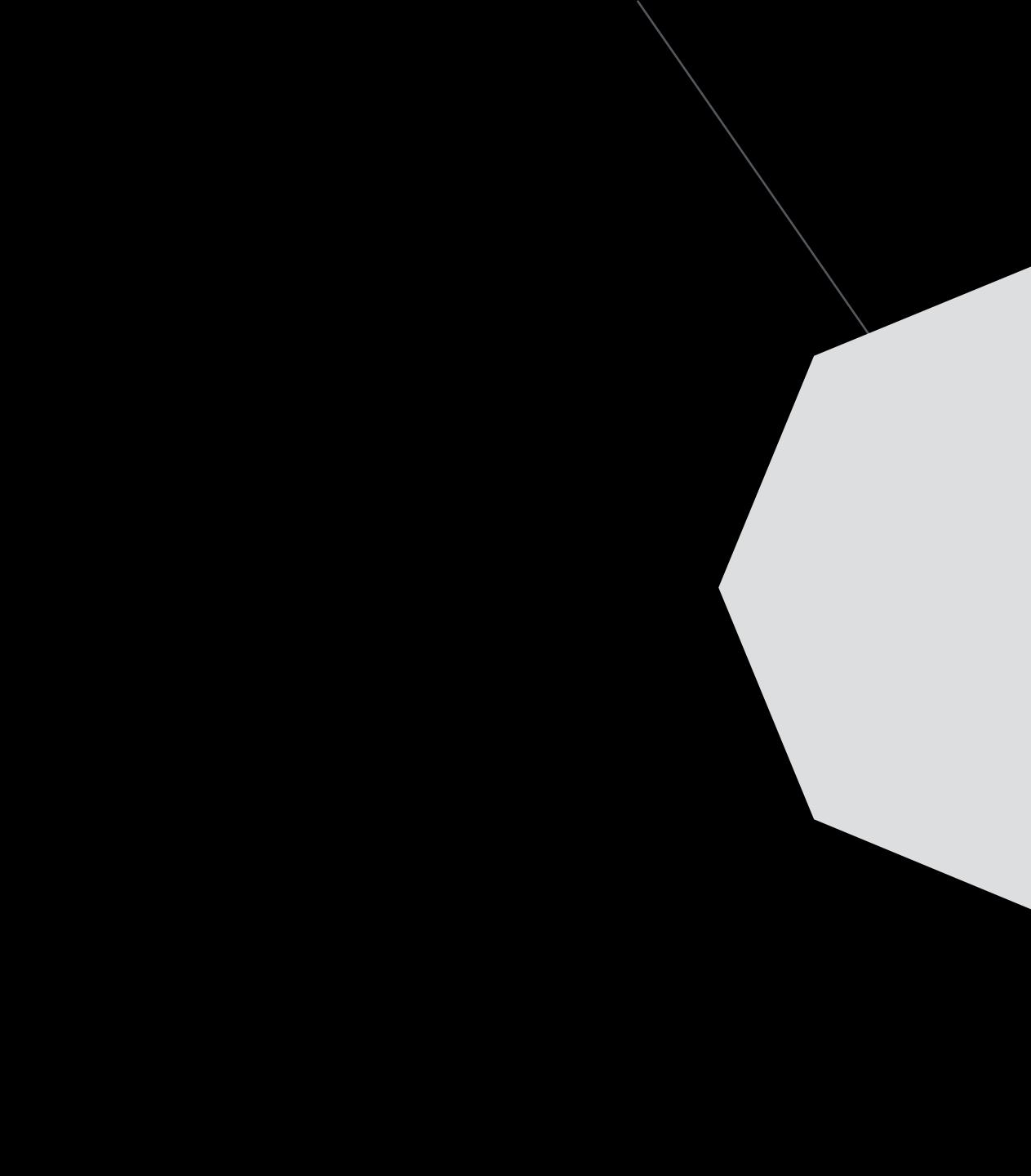
	heads	tails
black	0.5 imes 0.2=0.1	0.5 imes 0.4=0.2
white	0.5 imes 0.8=0.4	0.5 imes 0.6=0.3

MARGINAL DISTRIBUTIONS

• if $\Omega = \Omega_1 \times ... \Omega_n$ and $A_i \subseteq \Omega_i$, the marginal probability of A_i is: $P(A_i) =$ $A_1 \subseteq \Omega_1, \dots, A_{i-1} \subseteq \Omega_{i-1}, A_{i+1} \subseteq \Omega_{i+1}, \dots, A_n \subseteq \Omega_n$

	heads	tails		
black	0.5 imes 0.2=0.1	0.5 imes 0.4=0.2	P(black) = 0	
white	0.5 imes 0.8=0.4	0.5 imes 0.6=0.3	P(white) = 0	
Σ	P(heads) = 0.5	P(tails) = 0.5		

$$P(A_1, ..., A_{i-1}, A_i, A_{i+1}, ..., A_n)$$



Conditional probability & Bayes rule

CONDITIONAL PROBABILITY

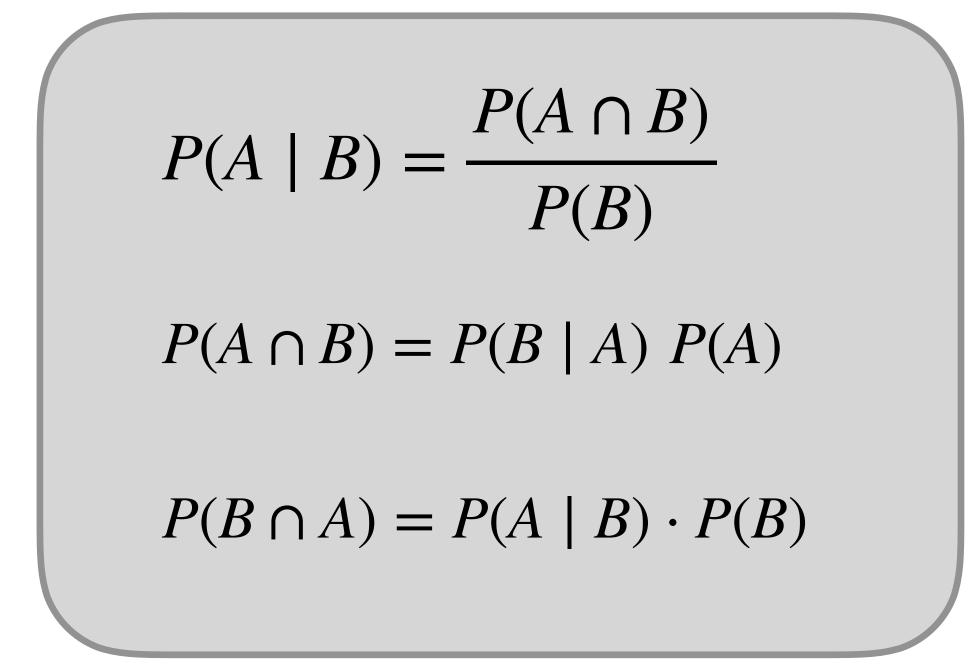
▶ the conditional probability of A given B is: $P(A | B) = \frac{P(A \cap B)}{P(B)}$

P(black	heads) = $\frac{P(black)}{P(black)}$	$\frac{1}{100}$, heads) = $\frac{0.1}{0.5}$ = 0.2	
	heads	tails	Σ
black	0.5 imes 0.2=0.1	0.5 imes 0.4=0.2	P(black) = 0
white	0.5 imes 0.8=0.4	0.5 imes 0.6=0.3	P(white) = 0
Σ	P(heads) = 0.5	P(tails) = 0.5	

BAYES RULE

 Bayes rule follows straightforwardly from the definition of conditional probability:

 $P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A)}$



INTRODUCTION TO DATA ANALYSIS

PREVIEW ::: BAYES RULE FOR DATA ANALYSIS

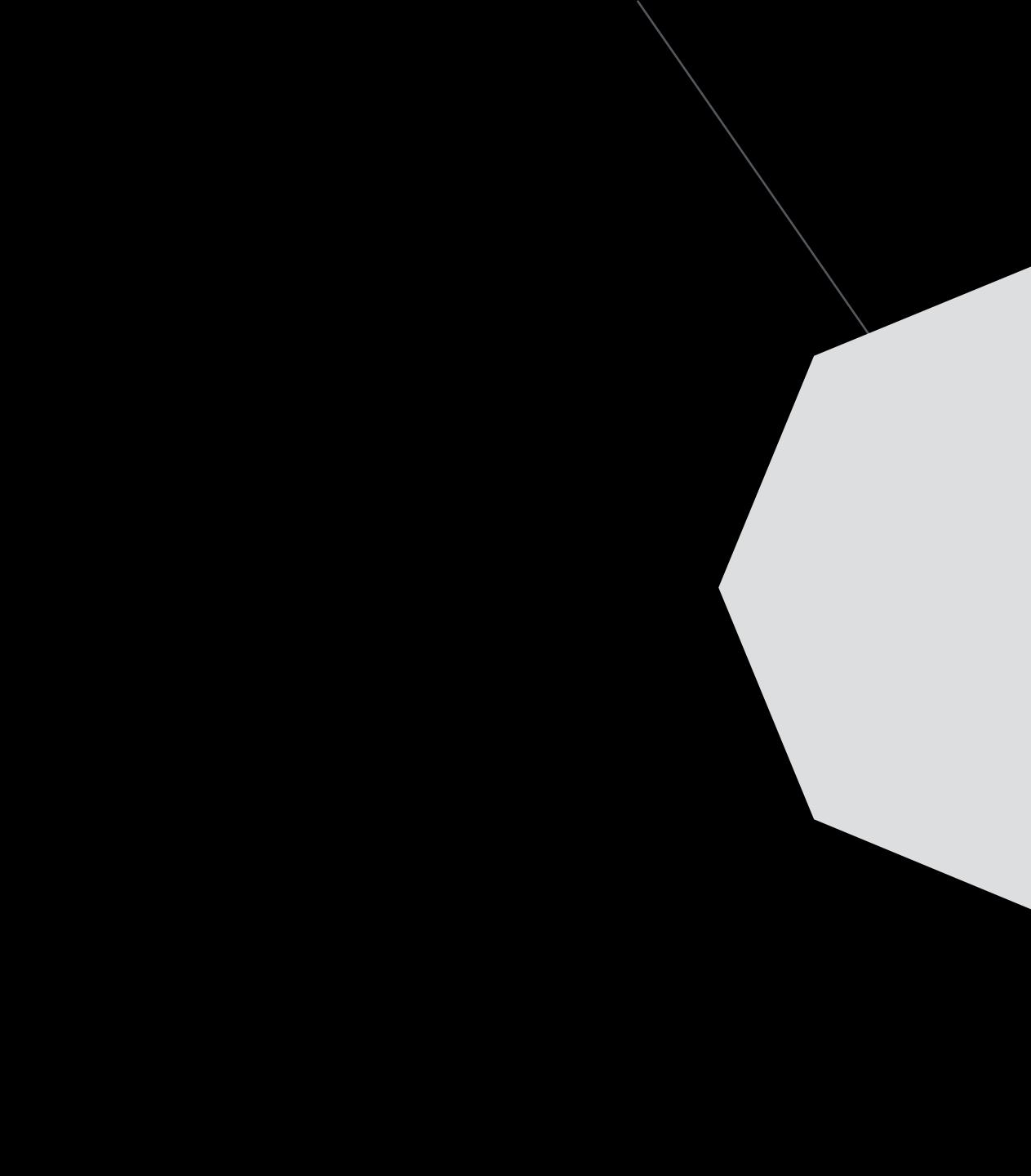
$P(\theta \mid D) =$ posterior over parameters

$$P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A)}$$

likelihood of data prior over parameters $P(D \mid \theta) P(\theta)$

P(D) marginal likelihood of data

<u>B)</u>



Random Variables

RANDOM VARIABLES

- a random variable is a function: $X : \Omega \to \mathbb{R}$

 - if range of X is countable, we speak of a discrete random variable otherwise, we speak of a continuous random variable
- think: distribution of a summary statistic
- notation:
 - shorthand notation P(X = x) instead of $P(\{\omega \in \Omega \mid X(\omega) = 2\})$
 - similarly write stuff like $P(X \le x)$ or $P(1 \le X \le 2)$

RANDOM VARIABLE ::: EXAMPLES

way of mapping this onto numerical outcomes is to define flip and the outcome of the second flip, so that we get:

the same numerical value to different elementary outcomes.

- **Example.** For a single flip of a coin we have $\Omega_{\text{coin flip}} = \{\text{heads}, \text{tails}\}$. A usual
- $X_{\text{coin flip}}$: heads $\mapsto 1$; tails $\mapsto 0$. Less trivially, consider flipping a coin two
- times. Elementary outcomes should be individuated by the outcome of the first
 - $\Omega_{\text{two flips}} = \{ \langle \text{heads}, \text{heads} \rangle, \langle \text{heads}, \text{tails} \rangle, \langle \text{tails}, \text{heads} \rangle, \langle \text{tails}, \text{tails} \rangle \}$
- Consider the random variable $X_{\rm two\ flips}$ that counts the total number of heads. Crucially, $X_{\text{two flips}}(\langle \text{heads}, \text{tails} \rangle) = 1 = X_{\text{two flips}}(\langle \text{tails}, \text{heads} \rangle)$. We assign

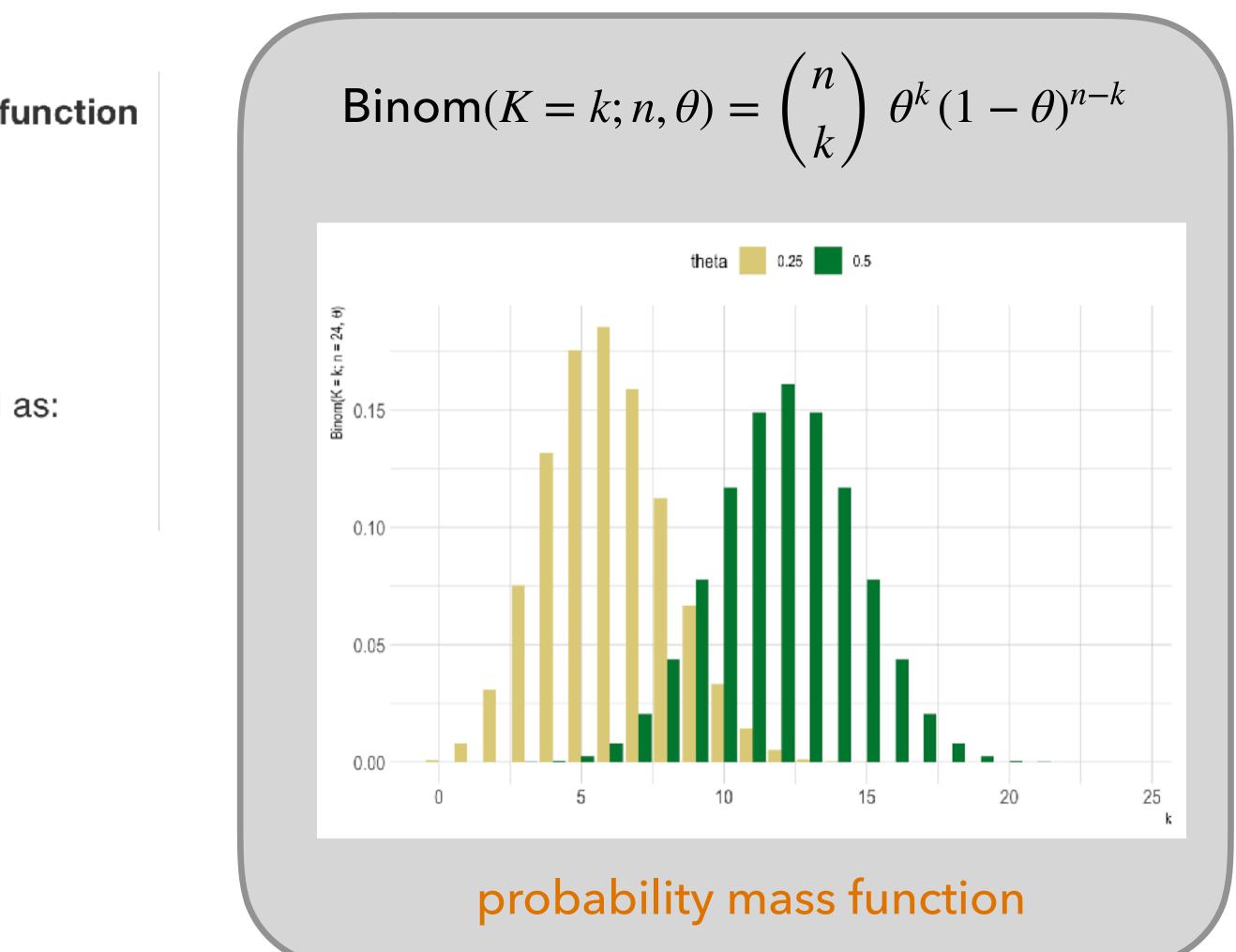
CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: DISCRETE RVs

For a discrete random variable X, the **cumulative distribution function** F_X associated with X is defined as:

$$F_X(x)=P(X\leq x)=\sum_{x'\in\{\operatorname{Rng}(X)|x'\leq x\}}P(X=x)$$

The **probability mass function** f_x associated with X is defined as:

$$f_X(x) = P(X = x)$$



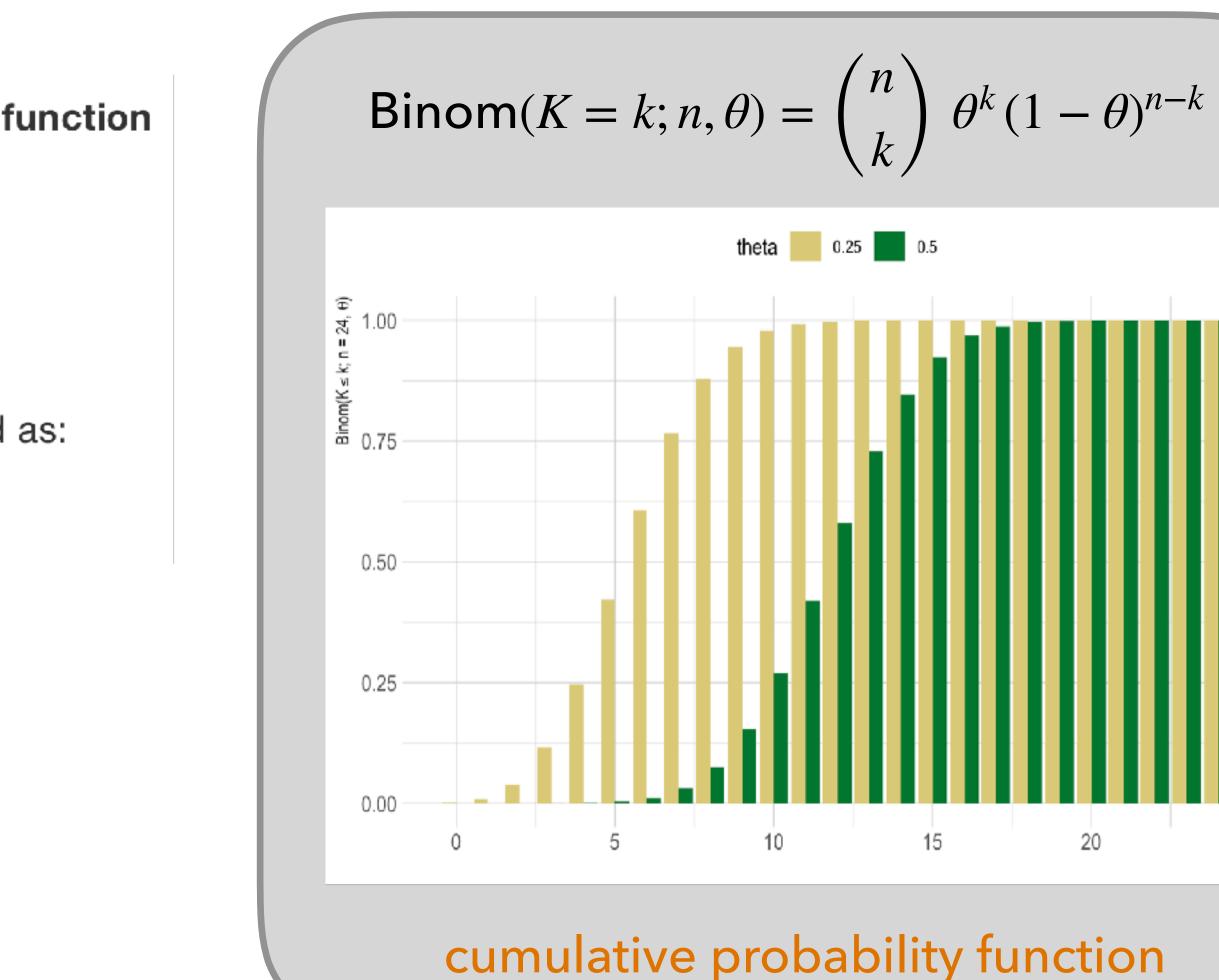
CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: DISCRETE RVs

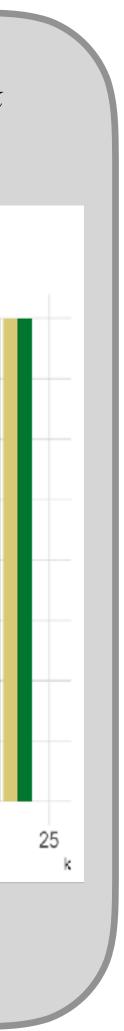
For a discrete random variable X, the **cumulative distribution function** F_X associated with X is defined as:

$$F_X(x)=P(X\leq x)=\sum_{x'\in\{\operatorname{Rng}(X)|x'\leq x\}}P(X=x)$$

The **probability mass function** f_x associated with X is defined as:

$$f_X(x) = P(X = x)$$





CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: CONTINUOUS RVs

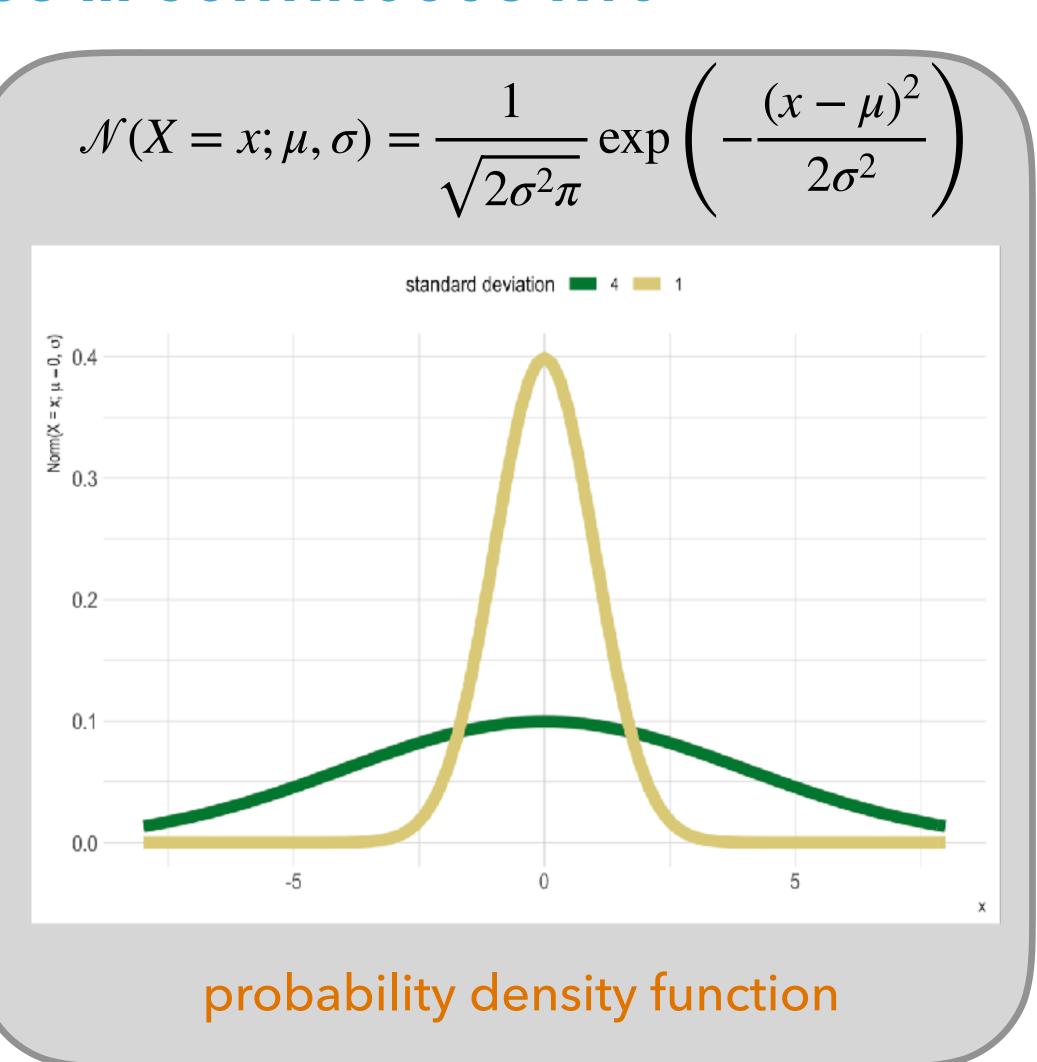
For a continuous random variable X, the probability P(X = x) will usually be zero: it is virtually impossible that we will see precisely the value xrealized in a random event that can realize uncountably many numerical values of X. However, $P(X \le x)$ does take workable values and so we define the cumulative distribution function F_X associated with X as:

$$F_X(x) = P(X \leq x)$$

Instead of a probability mass function, we derive a probability density function from the cumulative function as:

$$f_X(x)=F^{\prime}(x)$$

A probability density function can take values greater than one, unlike a probability mass function.



CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: CONTINUOUS RVs

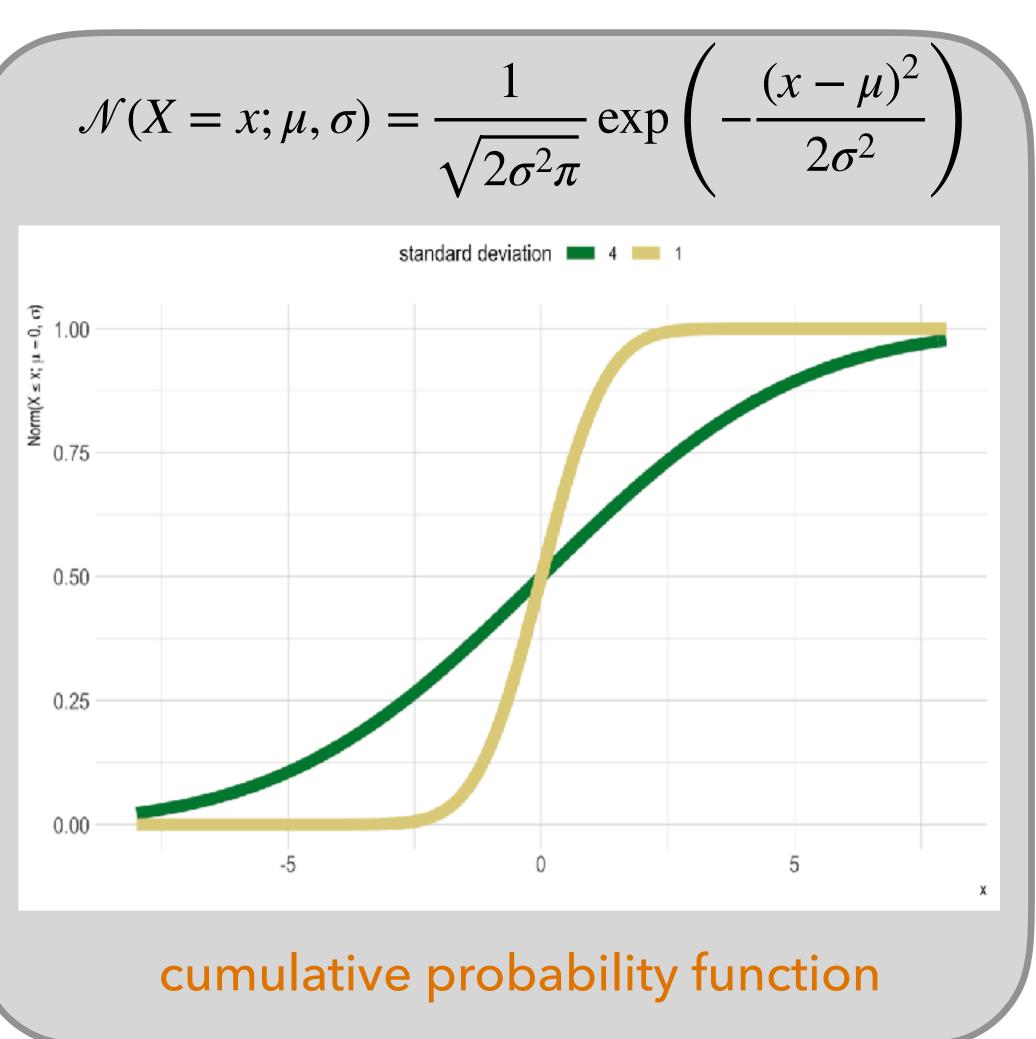
For a continuous random variable X, the probability P(X = x) will usually be zero: it is virtually impossible that we will see precisely the value xrealized in a random event that can realize uncountably many numerical values of X. However, $P(X \leq x)$ does take workable values and so we define the cumulative distribution function F_X associated with X as:

$$F_X(x) = P(X \leq x)$$

Instead of a probability mass function, we derive a probability density function from the cumulative function as:

$$f_X(x)=F^{\prime}(x)$$

A probability density function can take values greater than one, unlike a probability mass function.



EXPECTED VALUE OF A RANDOM VARIABLE

the expected value of random variable $X : \Omega \to \mathbb{R}$ is:

if X is discreet:
$$\mathbb{E}_X = \sum_x x f_X(x)$$

if X is continuous: $\mathbb{E}_X = \int x f_X(x) \, \mathrm{d}x$

think: mean of a representative sample of X

VARIANCE OF A RANDOM VARIABLE

• the variance of random variable $X : \Omega \to \mathbb{R}$ is:

if X is discreet: Var(X) = $\sum (\mathbb{E}_X - x)^2 f_X(x)$ X

if X is continuous: $Var(X) = \int (\mathbb{E}_X - x)^2 f_X(x) dx$

think: variance of a representative sample of X

COMPOSITE RANDOM VARIABLES

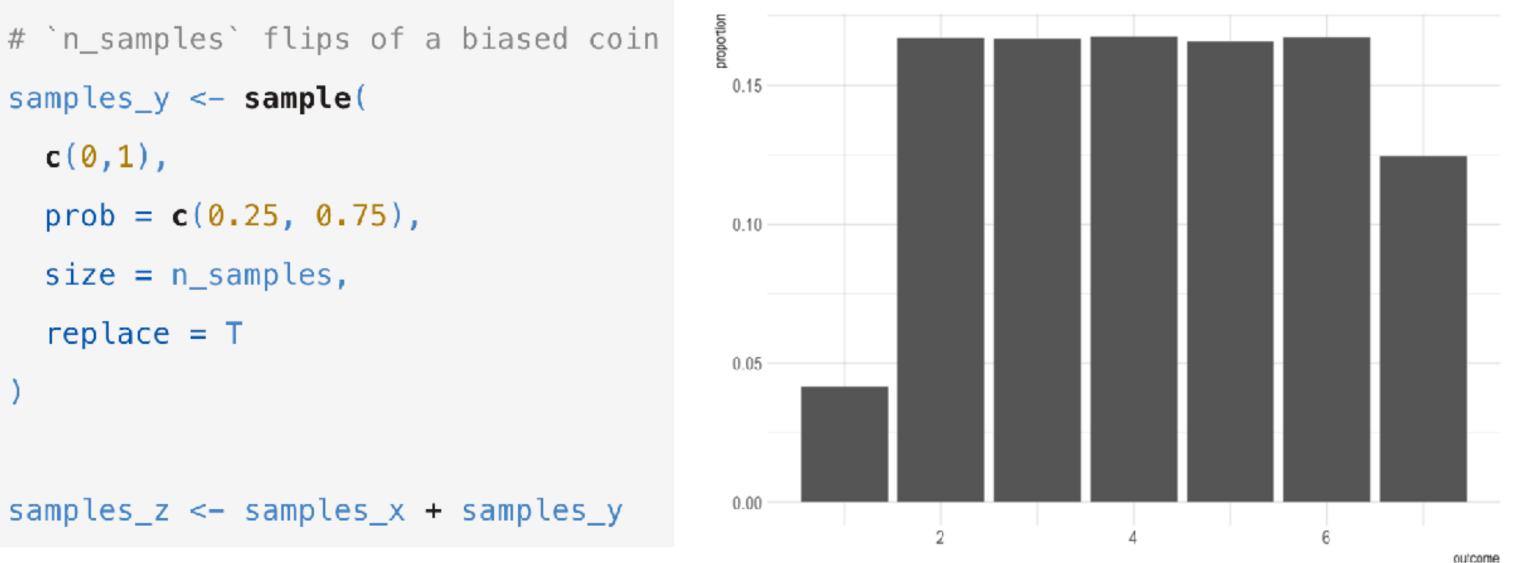
e.g., Z = X + Y, where X and Y are random variables

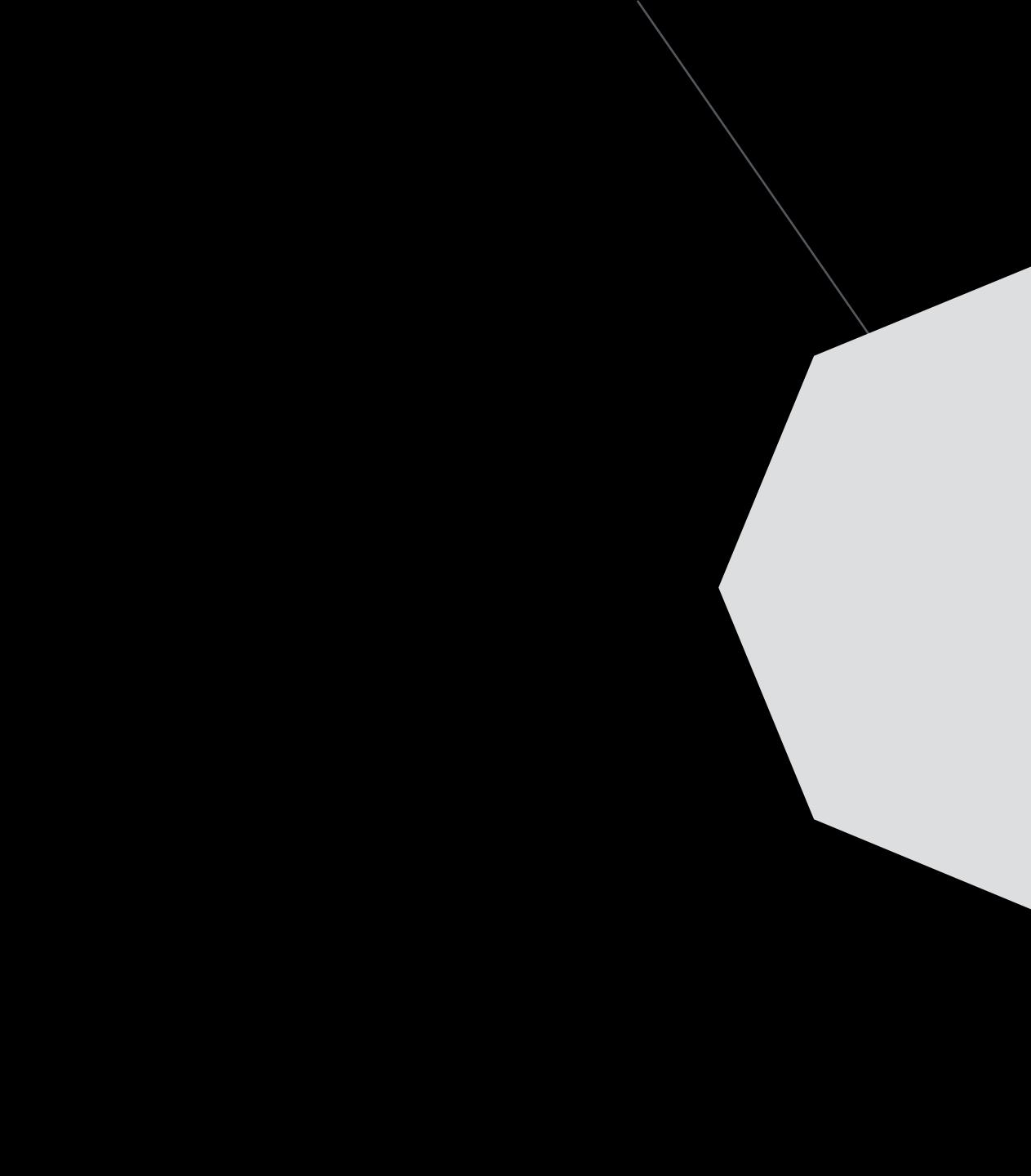
easy to conceive of this in terms of samples

```
n_samples <- 1e6
# `n_samples` rolls of a fair dice
samples_x <- sample(</pre>
 1:6,
 size = n_samples,
  replace = T
```

```
samples_y <- sample(</pre>
  c(0,1),
  prob = c(0.25, 0.75),
  size = n_samples,
  replace = T
```

• we can compose random variables with standard mathematical operations





Probability distributions in R

PROBABILITY DISTRIBUTIONS IN R

- for each distribution mydist, there are four types of functions
 - dmydist(x, ...) density function gives the (mass/density) f(x) for x
 - pmydist(x, ...) cumulative probability function gives cumulative distribution F(x) for x
 - output (p, ...) quantile function gives value x with p = pmydist(x, ...) rmydist(n, ...) random sample function returns n samples from the
 - distribution

EXAMPLE ::: NORMAL DISTRIBUTION

density of standard normal at x = 1dnorm(x = 1, mean = 0, sd = 1)

[1] 0.2419707

cumulative density of standard normal at q = 0
pnorm(q = 0, mean = 0, sd = 1)

[1] 0.5

point where the cumulative density of standard normal is p = 0qnorm(p = 0.5, mean = 0, sd = 1)

[1] 0

n = 3 random samples from a standard normal
rnorm(n = 3, mean = 0, sd = 1)

[1] 0.5382749 -0.1837154 -0.3165524

