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» become familiar with the notion of probability
» axiomatic definition & interpretation —

» joint, marginal & conditional probability
» Bayes rule
» random variables
» probability distributions in R

» probability distributions as approximated by samples
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ELEMENTARY OUTCOMES AND EVENTS

» arandom process has elementary outcomes Q2 = {0, w,, ...}
» elementary outcomes are mutually exclusive

» (2 exhausts the space of possibilities

» any A C Qis an event
» standard set-theoretic notation for negation, conjunction, disjunction etc.
» example “rolling an odd number” A ={p, 5,8}
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PROBABILITY DISTRIBUTION

A probability distribution P over 2 is a function P : ‘B(£2) — R that
assigns to all events A C (2 a real number (from the unit interval, see A
below), such that the following (so-called Kolmogorov axioms) are

satisfied:
Al.0 < P(A) <1

A2. P(Q2) =1

A3. P(A; UAs UAsU...) = P(A;) + P(As) + P(As) + ... whenever

Ay, As, As, ... are mutually exclusive
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INTERPRETATIONS OF PROBABILITY

» Frequentist: probabilities are generalizations of intuitions/facts about
frequencies of events in repeated executions of a random event.

» Subjectivist: probabilities are subjective beliefs by a rational agent who is
uncertain about the outcome of a random event.

» Realist: probabilities are a property of an intrinsically random world.
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Temporal development of the proportion of draws from an urn
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PROBABILITY DISTRIBUTIONS AS SAMPLES

» No matter our preferred metaphysical interpretation, we can approximate a
probability distribution by either:

| can you a

» a large set of representative samples; or sample give!

» an oracle that returns a sample if needed.
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(O P(white) = 0.8 P(black) = 0.4 @ O P(white) = 0.6

P(black) = 0.2 .1
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JOINT PROBABILITY DISTRIBUTIONS

» Structured elementary outcomes: Qg ¢ i = i X Ly

» shorthand notation P(heads, black) instead of P({heads, black))

heads tails
black 0.5 x0.2=0.1 0.5 x0.4=0.2

white 0.5 x 0.8 =0.4 0.5 X 0.6 =0.3
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MARGINAL DISTRIBUTIONS

p it Q=0Q,X...Q2 and A, C Q, the marginal probability of A. is:

P(A) = Z

A1CQy,. A S8 1A S804, C8,

PA,, ..., A_,A, A, ...A)

heads tails

0.5 x0.2=0.1 0.5 x0.4=0.2

0.5 x0.8=04 0.5 0.6 =0.3
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CONDITIONAL PROBABILITY
P(A N B)
» the conditional probability of A given B is: PA|B)=—
P(B)
P(black, h 1
P(black | heads) = (black, heads) = 0 =0.2
P(heads) 0.5
heads tails 2
black 0.5x0.2=0.1 0.5x0.4=0.2 P(black) = 0.3
white 0.5 x0.8=0.4 0.5 x 0.6 =0.3 P(white) = 0.7

Z P(heads) = 0.5 P(tails) = 0.5
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BAYES RULE

» Bayes rule follows
straightforwardly from the
definition of conditional
probability:

P(B|A) = O

P(A'| B) P(B)

P(A N B)
P(B)

P(A | B) =

P(ANB) = P(B | A) P(A)

P(BNA) = P(A | B) - P(B)
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PREVIEW ::: BAYES RULE FOR DATA ANALYSIS P | 4) = LALE) PB)

P(A)

likelihood of data  prio

D) - P(D | ) P(O)
s P(D)

marginal likelihood of data

P(H
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RANDOM VARIABLES

» a random variable is a function: X : Q — [

» if range of X is countable, we speak of a discrete random variable
» otherwise, we speak of a continuous random variable

» think: distribution of a summary statistic

» notation:
» shorthand notation P(X = x) instead of P({w € Q | X(w) = 2})

» similarly write stuff like P(X < x) or P(1 £ X <?2)
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RANDOM VARIABLE ::: EXAMPLES
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CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: DISCRETE RVs

. n _
For a discrete random variable X, the cumulative distribution function Banm(K — k; n, 9) — (k) 19k (1 — 6’)" K

F'y associated with X is defined as:

FX(Q?) — P(X S ZB) — Z P(_X — ;I}) theta 025 [ os
z'€{Rng(X)[2"<=z} ?

The probability mass function f, associated with X is defined as: %0.15

fx(x) = P(X = x)
0.10
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probability mass function
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CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: DISCRETE RVs

. n _
For a discrete random variable X, the cumulative distribution function Blnom(K — k; n, (9) — (k) t9k (1 — 6’)" K

F'y associated with X is defined as:

Fx(z) =P(X<z)=  »  P(X=aq)
r'€{Rng(X)|a" <z}

The probability mass function f, associated with X is defined as:

fx(z) = P(X = z)

theta 025 [ o5
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cumulative probability function
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CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: CONTINUOUS RVs

For a continuous random variable X, the probability P(X = a) will usually

be zero: it is virtually impossible that we will see precisely the value

realized in a random event that can realize uncountably many numerical

standard deviation . <

values of X. However, P(X < z) does take workable values and so we

<
"

define the cumulative distribution function #'y associated with X as:
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Fx(z) = P(X <z)

it
w

Instead of a probability mass function, we derive a probability density

function from the cumulative function as:

fx(z) = F'(z)

A probability density function can take values greater than one, unlike a

probability mass function.

probability density function
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CUMULATIVE DISTRIBUTION & PROBABILITY MASS ::: CONTINUOUS RVs

For a continuous random variable X, the probability P(X = a) will usually

be zero: it is virtually impossible that we will see precisely the value

realized in a random event that can realize uncountably many numerical

standard deviation . 4

values of X. However, P(X < z) does take workable values and so we

define the cumulative distribution function #'y associated with X as:
Fx(z) = P(X < x)

Instead of a probability mass function, we derive a probability density

function from the cumulative function as:

fx(z) = F'(z)

A probability density function can take values greater than one, unlike a

probability mass function.

cumulative probability function
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EXPECTED VALUE OF A RANDOM VARIABLE

» the expected value of random variable X : Q — |

it X is discreet: [y, = Z X fy(x)

X

if X is continuous: [y = jx fx(x) dx

» think: mean of a representative sample of X

IS:
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VARIANCE OF A RANDOM VARIABLE

» the variance of random variable X : Q — R is:

if X is discreet: Var(X) = Z (Ey — x)? Jx(x)

if X is continuous: Var(X) = J'( —y — x)? fx(x) dx

» think: variance of a representative sample of X
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COMPOSITE RANDOM VARIABLES

» we can compose random variables with standard mathematical operations
e.g.,Z =X+ Y, where X and Y are random variables

» easy to conceive of this in terms of samples

n_samples <- 1e6 # n_samples flips of a biased coin

propotion

0
# 'n_samples’ rolls of a fair dice samples_y <- sample(
samples_x <- sample( c(0,1),
1:6 prob = ¢(0.25, 0.75), .
S les.
size = n_samples, >1z€ = N_samptes
replace = T replace = T

\ 0
)

samples_z <- samples_x + samples_y !
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PROBABILITY DISTRIBUTIONS IN R

» for each distribution myd-ist, there are four types of functions

» dmydist(x, ...) densityfunction givesthe (mass/density) f(x) for x

» pmydist(x, ...) cumulative probability function gives cumulative distribution
F(x) for x

» gmydist(p, ...) quantilefunction givesvalue xwithp = pmydist(x, ...)

» rmydist(n, ...)random sample function returns n samples from the

distribution
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EXAMPLE ::: NORMAL DISTRIBUTION

# density of standard normal at x = 1 # point where the cumulative density of standard normal is p = @
dnorm(x = 1, mean = 0, sd = 1) gnorm(p = 0.5, mean = @, sd = 1)

## [1] 0.2419707 ## [1] ©

# cumulative density of standard normal at q = @ # n = 3 random samples from a standard normal

pnorm(gq = @, mean = @, sd = 1) rnorm(n = 3, mean = @, sd = 1)

## [1] 0.5 ## [1] ©0.5382749 -0.1837154 -0.3165524



