# **INTRODUCTION TO DATA ANALYSIS**

# WHAT'S DATA?



## **LEARNING GOALS**

- appreciate the diversity of data
- distinguish different kinds of variables
  - dependent vs independent
  - nominal vs ordinal vs metric
- get familiar with basic aspects of experimental design
  - factorial designs, within- vs between subjects design
  - repeated measures, randomization, fillers and controls



### WHAT DOES "DATA" MEAN?

: factual information (such as measurements or statistics) used as a basis for 1 reasoning, discussion, or calculation *II* the *data* is plentiful and easily available — H. A. Gleason, Jr.

*II* comprehensive *data* on economic growth have been published — N. H. Jacoby

- : information in digital form that can be transmitted or processed 2
- : information output by a sensing device or organ that includes both useful and 3 irrelevant or redundant information and must be processed to be meaningful



## **GOALS OF DATA ANALYSIS**

- explanation: understand / find the true relation between variables of interest
   e.g., causal mechanism or correlation
- prediction: accurately predict hitherto unobserved (e.g., future) data points
   e.g., for medical image classification (tumor recognition)

### **INTRODUCTION TO DATA ANALYSIS**

### **KINDS OF DATA**



### **RECTANGULAR DATA**

- columns represent variables
- rows are associated observations

```
# proportion of tutorials attended and exam pass/fail
exam_results <-
 tribble(
               ~tutorial_proportion,
   ~student,
                                       ~pass,
    "Jax",
               0.0,
                                       TRUE,
   "Jason",
               0.78,
                                       FALSE,
   "Jamie",
               0.39,
                                       TRUE
exam_results
```

```
## # A tibble: 3 x 3
## student tutorial_proportion pass
## <chr> <dbl> <lgl>

## 1 Jax 0 TRUE
## 2 Jason 0.78 FALSE
## 3 Jamie 0.39 TRUE
```

# **KINDS OF VARIABLES**



### **KINDS OF VARIABLES**

| variable type    | represe |
|------------------|---------|
| nominal / binary | unorde  |
| Boolean          | logical |
| ordinal          | ordered |
| metric           | numerio |



# **DEPENDENT VS INDEPENDENT VARIABLES**

- dependent variables represent data we want to explain / predict  $\diamond dep. variable \neq what's measured$
- independent variables represent data we want to use as explanans / conditional information based on which to make predictions
- distinction is entirely purpose-driven

| # | A tibbl     | le: 3 >       | < 3         |
|---|-------------|---------------|-------------|
|   | maker       | price         | consumption |
|   | <chr></chr> | <dbl></dbl>   | <db1></db1> |
| 1 | Audi        | <u>43</u> 900 | 7.2         |
| 2 | Volvo       | <u>61</u> 350 | 6.8         |
| 3 | Toyota      | <u>34</u> 290 | 5.3         |

It's not possible to say which of these variables has to be (for logical reasons) a dependent or independent variable. That depends on the goal of explanation/prediction.



### **EXPERIMENTAL DATA**

- experimental data typically has:
  - at least one dependent variable
  - at least one independent variable
  - some association of observations between variables

| (TDDCE) | tribble( |  |
|---------|----------|--|
|---------|----------|--|

| ~subj_id, | ~group,      | ~systolic, |
|-----------|--------------|------------|
| 1,        | "treatment", | 118,       |
| 2,        | "control",   | 132,       |
| З,        | "control",   | 116,       |
| 4,        | "treatment", | 127,       |
| 5,        | "treatment", | 122        |
|           |              |            |

| ## | # | A tibble    | e: 5 x 3    |                     |
|----|---|-------------|-------------|---------------------|
| ## |   | subj_id     | group       | systoli             |
| ## |   | <dbl></dbl> | <chr></chr> | <dbl< td=""></dbl<> |
| ## | 1 | 1           | treatment   | 11                  |
| ## | 2 | 2           | control     | 13                  |
| ## | 3 | 3           | control     | 11                  |
| ## | 4 | 4           | treatment   | 12                  |
| ## | 5 | 5           | treatment   | 12                  |

# FACTORIAL DESIGN

- if all independent variables are at most ordinal in nature, we have a factorial design
- a 2x3 factorial design has:
  - two factors
  - one with two levels
  - another one with three levels
- a 2x3 factorial design has 6=2\*3 experimental conditions (= design cells)

### tribble(

| ~subj_id, | ~group,      | ~systolic, |
|-----------|--------------|------------|
| 1,        | "treatment", | 118,       |
| 2,        | "control",   | 132,       |
| З,        | "control",   | 116,       |
| 4,        | "treatment", | 127,       |
| 5,        | "treatment", | 122        |
|           |              |            |

| ## | # | А  | tik  | ble | 9  | 5   | Х  | 3 |  |
|----|---|----|------|-----|----|-----|----|---|--|
| ## |   | รเ | ubj_ | _id | g١ | roi | ıр |   |  |

| ## |   | subj_id     | group       | systolic    |
|----|---|-------------|-------------|-------------|
| ## |   | <dbl></dbl> | <chr></chr> | <dbl></dbl> |
| ## | 1 | 1           | treatment   | 118         |
| ## | 2 | 2           | control     | 132         |
| ## | 3 | 3           | control     | 116         |
| ## | 4 | 4           | treatment   | 127         |
| ## | 5 | 5           | treatment   | 122         |

# WITHIN- & BETWEEN-SUBJECTS DESIGNS

- within-subjects design: every participant contributes at least one observation to each experimental condition
- between-subjects design: not every participant contributes data to each experimental condition

### tribble(

| ~subj_id, | ~group,      | ~systolic, |
|-----------|--------------|------------|
| 1,        | "treatment", | 118,       |
| 2,        | "control",   | 132,       |
| З,        | "control",   | 116,       |
| 4,        | "treatment", | 127,       |
| 5,        | "treatment", | 122        |
| )         |              |            |

| ## | # | А | tibb | le: | 5 | Х | 3 |  |
|----|---|---|------|-----|---|---|---|--|
|----|---|---|------|-----|---|---|---|--|

| ## |   | subj_id     | group       | systolic     |
|----|---|-------------|-------------|--------------|
| ## |   | <dbl></dbl> | <chr></chr> | <dbl></dbl>  |
| ## | 1 | 1           | treatment   | 118          |
| ## | 2 | 2           | control     | 132          |
| ## | 3 | 3           | control     | 1 <b>1</b> 6 |
| ## | 4 | 4           | treatment   | 127          |
| ## | 5 | 5           | treatment   | 122          |

# WITHIN- & BETWEEN-SUBJECTS DESIGNS

- within-subjects design: every participant contributes at least one observation to each experimental condition
- between-subjects design: not every participant contributes data to each experimental condition

between-subjects

no confound betwee

more participants ne

Different designs have different pro's and cons's

less associated infor



| ~subj_id, | ~group,      | ~systolic, |
|-----------|--------------|------------|
| 1,        | "treatment", | 118,       |
| 2,        | "control",   | 132,       |
| З,        | "control",   | 116,       |
| 4,        | "treatment", | 127,       |
| 5,        | "treatment", | 122        |
|           |              |            |

Example of a between-subject design.

|                     | within-subjects                                 |
|---------------------|-------------------------------------------------|
| n conditions        | possible cross-contamination between conditions |
| eded                | fewer participants needed                       |
| mation for analysis | more associated data for analysis               |

# **REPEATED MEASURES**

- single-shot experiment: every participant contributes exactly one data point to exactly one experimental condition
- repeated measures: every participant contributes more than one observation to at least one experimental condition
  - repetition can lead to data contamination
  - calls for fillers, randomization and itemvariability

| tribble(  |              |            |
|-----------|--------------|------------|
| ~subj_id, | ~group,      | ~systolic, |
| 1,        | "treatment", | 118,       |
| 2,        | "control",   | 132,       |
| З,        | "control",   | 116,       |
| 4,        | "treatment", | 127,       |
| 5,        | "treatment", | 122        |
| )         |              |            |
|           |              |            |

This is a single-shot experiment.

### **TYPES OF TRIALS**

- critical: belongs to an experimental condition
- filler: used to introduce variance, disguise experimental purpose, avoid repetition etc.
- control: used to check whether participants paid attention, understood the task, etc.

# SAMPLE SIZE

- how many observations does a study need for each experimental condition?
- answer depends on goals of statistical analysis power-calculation, error control, etc.

## HOMEWORK

- read Chapter 3
- work on HW1
  - to be submitted next Friday before noon
  - released later today
  - see course website & email announcement