INTRODUCTION TO

MAIN COURSE MATERIAL

- course website (link also on StudIP)
 - https://michael-franke.github.io/IDA-2019/
 - slides, homework etc. will appear here
- course notes as web-book (link also on StudIP)
 - https://michael-franke.github.io/intro-data-analysis/
 - main reading

LECTURES

- make sure to catch both lectures each week
 - Wednesday, 10:15-11:45 (66/E33)
 - Friday, 12:15-13:45 (32/102)
- prepare reading in advance (see schedule on website)
- reread chapter after lecture

TUTORIALS

- everybody should catch at least one tutorial per week
- tutorial times and locations (also on StudIP).
 - Monday, 10:15-11:45 (66/E34)
 - Tuesday, 8:15-9:45 (66/E33) [this tutorial will not take place on Nov 5]
 - Tuesday, 12:15-13:45 (32/107)

tutorials give extra background and practical exercises (tutors vary w/o notice)

IDA-2019 TEAM

tutors

Tallulah Jansen, Nina Mainusch, Maria Pershina, Jona Carmon, Taher Habib, Marc Viladrich

web-book

- Florence Bockting, Tobias Anton
- additional support
 - Noa Kallioinen, Ann-Christin Meisener

COURSE REQUIREMENTS

- required for passing:
 - 1. passing grade on homework assignments
 - weekly assignments to be submitted in groups of three
 - 2. passing grade on final exam
 - 4h written, "open-book" (bring hand-written notes)
- see course website for more information https://michael-franke.github.io/IDA-2019/grading/

HOMEWORK

- HW issued on Friday evening (after lecture)
- HW due Friday next week at noon (before lecture)
- submit electronically via StudIP
 - upload to your group's folder
 - as Rmd or PDF (LaTeX, hand-written scan)
- no detailed comments as corrections but sample solution

LEARNING GOALS

- ability to explore data sets in hypothesis-driven manner
- manipulate & visualize data
- understand logic of statistical inference (frequentist vs Bayesian statistics)
- ability & confidence to critically assess DAs in research papers
- ability & confidence to tackle your own DA for an experimental BSc thesis

TECHNICAL SKILLS YOU WILL ACQUIRE IN THIS COURSE

- basics of R & tidyverse
 - write your own DA scripts (manipulation, visualization, statistical analyses)
- reproducible writing in Rmarkdown
- glimpse at probabilistic programming languages (WebPPL, greta)
- first contact with generalized linear models

WHAT YOU SHOULD NOT EXPECT OF THIS COURSE

- (MCMC, optimization, ...) "Our aim is understanding." "We do not teach tricks!" "We do not share recipes!"
- details of common algorithm for statistical computation emphasis on history and/or philosophy of statistics reactive practical competence in statistics

COMPARISON OF RELATED COURSES

- statistics @ Psych
 - focus on frequentist methods
 - SPSS instead of R
- probability theory @ Math
 - focus on theory not applications
 - math not computer science
 - foundational issues

neuroinformatics @ CogSci

- more focus on theory & math
- applications in neuroscience / ML
- intro data analysis @ CogSci
 - focus on computation
 - applications in behavioral psych
 - frequentist & Bayes

SCHEDULE (PRELIMINARY)

week	Content of tutorials	Wednesday lecture	Friday lecture	HW issued	week	Content of tutorials	Wednesday lecture	Friday lecture	HW is
44			Course overview Chapter 1		2	binomial test, t-test, (maybe ANOVA),	Classical testing 3 Chapter 11	Model comparison Chapter 12	HV
45	installing R & packages (Stan, tensorflow)	Intro to R Chapter 2	Data & data handling Chapter 3	HW1	3	model comparison, Bayes factors, LR test, AIC	Bayesian hypothesis testing Chapter 13	Model criticism Chapter 14	HV
46	using R, data handling / wrangling	Data wrangling Chapter 4	Summary statistics Chapter 5	HW2			Simple linear	Generalized	НМ
47	more R, wrangling, summary stats	NO LECTURE	Data plotting Chapter 6	HW3		regression	regression		
					5		Generalized	Hierarchical	НΜ
48	plotting, more R exercises	Probability basics Chapter 7	Frequentism vs Bayes Chapter 8	HW4	6		O&A	Final ovam	
49	probability calculus, Bayes rule	Statistical models Chapter 9	Parameter Inference 1 Chapter 10	HW5					
					7	Cognitive models	TBA		
50	simulations on error control, calculations with Bayes rule	NO LECTURE	Parameter Inference 2 Chapter 10	HW6			in data analysis		
51	sampling-based approaches using R, WebPPL, greta	Classical testing 1 Chapter 11	Classical testing 2 Chapter 11	HW7		check cours	e website fo	r updated sc	hed

FLAVORS OF MODERN STATISTICAL ANALYSIS

Η Н Η Ξ objective probability :: tests :: *p*-values :: error control

subjective probability :: beliefs :: updates

INTRODUCTION TO DATA ANALYSIS

STATISTICS AS POTTERY

rror	t value	Pr(>lt)	
4718	1283.74	<2e-16	***
5790	-58.35	<2e-16	****
5813	22.39	<2e-16	***

 $\kappa\!-\!2\sim\!Gamma(0.01,0.01)$ $\omega \sim \mathcal{U}(0,1)$ $\alpha = \omega \cdot (\kappa - 2) + 1$ $\beta = (1-\omega) \cdot (\kappa - 2) + 1$ $prior(s) = Betabinom(s|\alpha, \beta, 10)$ $rat.bel(s|o,a) \simeq Hyperg.(o|a,s,10) \cdot prior(s)$ $\sigma \sim \text{Gamma}(0.5, 1)$ $k \sim \text{Gamma}(5,5)$ $logit(r_{ivs}) \sim Norm(logit(rat.bel(s|o, a), k), \sigma)$

fuels

UNDERSTANDING THROUGH COMPUTATION

- statistical concepts can be understood in different ways
 - in terms of their motivation (practical or philosophical)
 - as a mathematical concept (elegance matters)
 - through implementation as algorithms
 - by exploring computational simulations

SELF-ANALYSIS

- aspiring analysts should undergo analysis themselves
- running examples based on online experiments
 - whoever wants can participate
 - collected data will be used in exercises and HW

FURTHER STUDY MATERIAL

- appendix chapter A of course material
- top pick on stats books:
 - Ben Lambert (2018) "A Student's Guide to Bayesian Statistics"
 - Bodo Winter (2019) "Statistics for Linguists: An introduction using R"

CONTACT

please direct all communication to

Tallulah Jansen <taljansen@uni-osnabrueck.de>

HOMEWORK FOR NEXT CLASS

- read Chapter 1 of course notes
- install all necessary software as described in Chapter 1.5
- visit a tutorial next week to get help with installation
 - no tutorial on Tue at 8:15-9:45 on Nov 5
- prepare Chapter 2