Computational Pragmatics

Michael Franke

Two views of language

"If I say to any one, 'I saw some of your children to-day', he might be justified in inferring that I did not see them all, not because the words mean it, but because, if I had seen them all, it is most likely that I should have said so."
(Mill 1867)
"[O]ne of my avowed aims is to see talking as a special case or variety of purposive, indeed rational, behaviour."
(Grice 1975)

Maxim of Quality

Try to make your contribution one that is true.
(i) Do not say what you believe to be false.
(ii) Do not say that for which you lack adequate evidence.

Maxim of Quantity

(i) Make your contribution as informative as is required for the current purposes of the exchange.
(ii) Do not make your contribution more informative than is required.

Maxim of Relation

(i) Be relevant.

Maxim of Manner
Be perspicuous.
(i) Avoid obscurity of expression.
(ii) Avoid ambiguity.
(iii) Be brief (avoid unnecessary prolixity).
(iv) Be orderly.

Pragmatics from rational social reasoning

Pragmatics from rational social reasoning

Pragmatics from rational social reasoning

rational interpreter

rational speaker
literal interpreter

Pragmatics from rational social reasoning

rational interpreter

	\forall	$\exists \neg \forall$
"all"	1	0
"some""	0	1

rational speaker

literal interpreter

	"all"	"some"
\forall	1	0
$\exists \neg \forall$	0	1

	\forall	$\exists \neg \forall$
"all"	1	0
"some""	.5	.5

Pragmatics from rational social reasoning

rational interpreter

	\forall	$\exists \neg \forall$
"all"	.9	.1
"some""	.1	.9

approximately rational speaker

	"all"	"some"
\forall	.9	.1
$\exists \neg \forall$.1	.9

literal interpreter

	\forall	$\exists \neg \forall$
"all"	1	0
"some""	.5	.5

Pragmatics from rational social reasoning

rational interpreter

	\forall	$\exists \neg \forall$
"all"	.9	.1
"some"	.1	.9

listener behavior
$U \rightarrow \Delta(S)$

speaker behavior

$$
S \rightarrow \Delta(U)
$$

Rational Speech Act model

pragmatic listener
pragmatic speaker
literal listener
L_{1}

$$
P_{L_{1}}(s \mid u) \propto P_{S_{1}}(u \mid s) \cdot P(s)
$$ S_{1}

$$
P_{S_{1}}(u \mid s) \propto \exp (\alpha(\underbrace{\log P_{L_{0}}(s \mid u)-\operatorname{Cost}(u)}_{\operatorname{Exp} . \operatorname{Utility}(u \mid s)}))
$$

$$
P_{L_{0}}(s \mid u)=P(s \mid \llbracket u \rrbracket)
$$

Rational Speech Act model

pragmatic listener

$$
\begin{equation*}
P_{L_{1}}(s \mid u) \propto P_{S_{1}}(u \mid s) \cdot P(s) \tag{1}
\end{equation*}
$$

pragmatic speaker

$$
P_{S_{1}}(u \mid s) \propto \exp (\alpha(\underbrace{\log P_{L_{0}}(s \mid u)-\operatorname{Cost}(u)}_{\text {Exp.Utility }(u \mid s)}))
$$

Rational Speech Act model

pragmatic listener

$$
\begin{equation*}
P_{L_{1}}(s \mid u) \propto P_{S_{1}}(u \mid s) \cdot P(s) \tag{1}
\end{equation*}
$$

pragmatic speaker
literal listener

rational choice

S1
$P_{S_{1}}(u \mid s) \propto \exp \left(\alpha\left(\log P_{L_{0}}(s \mid u)-\operatorname{Cost}(u)\right)\right)$
Exp.Utility $(u \mid s)$
information flow
Lo $\quad P_{L_{0}}(s \mid u)=P(s \mid \llbracket u \rrbracket)$

Rational Speech Act model

pragmatic listener
pragmatic speaker
literal listener

Bayes rule

$$
P_{S_{1}}(u \mid s) \propto \exp (\alpha(\underbrace{\log P_{L_{0}}(s \mid u)-\operatorname{Cost}(u)}_{\text {Exp.Utility }(u \mid s)}))
$$

$$
P_{L_{0}}(s \mid u)=P(s \mid \llbracket u \rrbracket)
$$

This course

applications
referential communication
(epistemic) scalar implicatures
non-literal language use
vagueness
politeness
referential communication

context

set of objects/referents
utterances
single properties of objects

$$
U=\{" \text { square" }, " \text { circle","green","blue" }\}
$$

which object do you think a speaker meant when she selects "blue"?

RSA for reference games (example)

rational interpreter

		0	\square
"square"	.82	0	.18
"circle"	0	1	0
"green"	0	0	1
"blue"	.82	.18	0

rational speaker

	"square"	"circle"	"green"	"blue"
	.5	0	0	.5
0	0	.89	0	.11
0	.11	0	.89	0

		0	\square
"square"	.5	0	.5
"circle"	0	1	0
"green"	0	0	1
"blue"	.5	.5	0

