Gradable adjectives, vagueness & context-dependence Joint inference model: Lassiter and Goodman (2014, online first)

> Michael Franke Computational Pragmatics 2018

Outline

look at lexical items with context-dependent "threshold semantics" vague gradable adjectives: *tall, long, full, ...*

here only: descriptive use of positive form

explore idea that contextual resolution of threshold

... depends on prior expectations ... is a joint pragmatic inference

(Lassiter and Goodman, online first)

Degree semantics for gradable adjectives

Lexical meaning of adjective A is a measure function

$$\llbracket A
rbracket_{\langle e,d
angle} = \lambda x_e \,.\, \mathbf{A}(x)$$
 e.g., $\llbracket tall
rbracket_{\langle e,d
angle} = \lambda x_e \,.\, \mathbf{height}(x)$

Truth conditions for simple positive sentences

[Hans is tall]]_t = $\theta_{tall} \prec \text{height}(hans)$

 θ_A : contextually supplied threshold

Question for pragmatics

How to determine θ_A in a given context?

today's suggestion: as a function of prior expectations

Relative vs. absolute adjectives

Two types of adjectives

relative: variable thresholds in different contexts e.g., *short*, *tall* absolute: fixed thresholds across contexts e.g., *open*, *closed*

Example

- (1) Joe is pretty short, but he's *tall for a jockey*.
- (2) ^{??} This door is pretty open, but it's *closed for a sliding door*.

Relative vs. absolute adjectives

Kennedy's observation

Absolute/relative distinction correlates with degree scale properties:

absolute adjective " \Leftrightarrow "

upper-/lower-bound are available degrees/measures

Open issue

How to fix θ for relative adjectives?

ideally: explain why absolute adjectives have fixed thresholds as well

(Kennedy, 2007)

Joint-inference of semantic parameter

Notation

$$S = \mathbb{R} = \{x \in \mathbb{R} \mid AI \text{ is } x \text{ tall.} \}$$
$$U = \{tall, \emptyset\}$$
$$\theta \in \mathbb{R}$$

 $\llbracket ta/I \rrbracket^{\theta} = \{ s \in S \mid s > \theta \}$ $\llbracket \emptyset \rrbracket^{\theta} = S$ P(s) : prior for comparison class

Definitions

 $P_{LL}(s \mid u, \theta) = P(s \mid \llbracket u \rrbracket^{\theta})$

 $P_{S_1}(u \mid s, \theta; \alpha, C) \propto \exp\left(\alpha \left(\log P_{LL}(s \mid u, \theta) - C(u)\right)\right)$

 $P_{L_1}(s,\theta \mid u;\alpha,C) \propto P(s) \cdot P(\theta) \cdot P_{S_1}(u \mid s,\theta;\alpha,C)$

assume $P(\theta) = P(\theta')$ for all θ, θ'

Simultion results

Upshot

listener has flat prior over $\boldsymbol{\theta}$

infers reasonable θ for every utterance

 $\alpha = 4$, $C(tall) - C(\emptyset) = 2$

References

Kennedy, Christopher (2007). "Vagueness and Grammar: The Semantics of Relative and Absolute Gradable Adjectives". In: *Linguistics and Philosophy* 30, pp. 1–45.

Kennedy, Christopher and Louise McNally (2005). "Scale Structure, Degree Modification, and the Semantics of Gradable Predicates". In: *Language* 81.2, pp. 345–381.

Lassiter, Daniel and Noah D. Goodman (2014). "Context, Scale Structure, and Statistics in the Interpretation of Positive-Form Adjectives". In: *Proceedings of SALT 23.*

 (online first). "Adjectival vagueness in a Bayesian model of interpretation". In: *Synthese*.
 Rotstein, Carmen and Yoad Winter (2004). "Total Adjectives vs. Partial Adjectives: Scale Structure and Higher-Order Modifiers". In: *Natural Language Semantics* 12.3, pp. 259–288.