
Michael Franke

Bayesian regression modeling: Theory & practice 
Part 6: Bayesian model comparison



Main learning goals

1. understand the role of model comparison in statistical inquiry 

2. understand & know how to apply common methods 
a. information criteria (AIC) 

b. Bayes factors 

c. cross-validation (LOO) 

3. get familiar with methods to compute Bayes factors 

a. Savage-Dickey method 

b. importance & bridge sampling
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what is 
model comparison                          
                              (good for)?
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Three pillars of BDA

1. parameter estimation / inference 

 

2. predictions 
a. prior 

 

3. model comparison 

P(θ | D)

posterior

∝ P(θ)
⏟
prior

× P(D | θ)

likelihood

P(Dpred) = ∫ P(θ) P(Dpred ∣ θ) dθ

P(M1 ∣ D)
P(M2 ∣ D)

posterior odds

=
P(D ∣ M1)
P(D ∣ M2)

Bayes factor

P(M1)
P(M2)

prior odds

b. posterior 

P(Dpred ∣ Dobs) = ∫ P(θ ∣ Dobs) P(Dpred ∣ θ) dθ

[which parameter values are credible given data and model?]

[which future data observations are likely given my model?]

[which model of two models is more likely to have generated the data?] 
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What makes a model ‘good’?

Good explanation 

‣ model  is a good model of data  to the extent that it explains  well 

‣ a good explanation of  is a view of the world that makes  less puzzling 
• the higher , the better  explains  

Simplicity / economy / parsimony 

‣ model  is a good model of data  to the extent that it is simple 

‣ we want our explanations to be austere, with few postulates, no magic 
ingredients and a lean mechanism / functional form 
• the fewer (powerful) parameters  has, the better

M D D

D D
P(D ∣ M) M D

M D

M



an  

information 
criterion
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Forgetting data

‣ 100 binary measurements (correct / incorrect 
recall) at different times after memorization

data from Myung (2003, Tutorial on Maximum Likelihood Estimation)

https://doi.org/10.1016/S0022-2496(02)00028-7


Exponential model Power model

P(D = ⟨k, N⟩ ∣ ⟨a, b⟩) = Binom(k, N, a exp(−bt))
with a, b > 0

P(D = ⟨k, N⟩ ∣ ⟨c, d⟩) = Binom(k, N, c t−d)
with c, d > 0
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Akaike information criterion

‣  is a (frequentist) model with likelihood function  

‣  free parameters in parameter vector  

‣  is the MLE for observed data  

‣ the AIC-score (where lower is better) is defined as:

Mi P(D ∣ θi, Mi)

k θi

̂θi = arg maxθi
P(Dobs ∣ θi, Mi) Dobs

AIC(Mi, Dobs) = 2k − 2 log P(Dobs ∣ ̂θi, Mi)

[penalty for complexity] [how surprising is the data for the best 
parameter of the model?]
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Computing AIC scores
step 1: compute MLE 
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Inspecting each model’s MLE predictions
step 1: compute MLE 

It’s hard to say from 
visual inspection which 

model is better.
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Computing AIC scores
step 2: calculate AIC from MLE 

AIC(Mi, Dobs) = 2k − 2 log P(Dobs ∣ ̂θi, Mi)

Exponential model has lower AIC 
score, so it comes up as “better” 
under this approach.
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Problems with AIC
extending also, with provisos, to other information criteria 

‣ AIC is not consistent 
• not guaranteed to select the true data-generating model under incrementally increasing observations 

‣ AIC has a tendency towards overfitting 
• selects more complex models over true simpler ones 

‣ crude measure of model complexity 
• just number of parameters, but not their functional role 
• e.g., do we really want to count all random-effect parameters as equal to fixed-effect parameters?

Vanderkerckhove et al. (2015, “Model Comparison and the Principle of Parsimony”) 

https://doi.org/10.1093/oxfordhb/9780199957996.013.14


Bayes factors



15

Bayes factors
measure of belief change from observational evidence

‣ Bayesian models (with priors): 
•  has prior  and likelihood  

•  has prior  and likelihood  

‣ Bayes factor is the factor by which the prior odds need to be adjusted 

by rational belief update after observing  to arrive at posterior odds

M1 P(θ1 ∣ M1) P(D ∣ θ1, M1)
M2 P(θ2 ∣ M2) P(D ∣ θ2, M2)

D

P(M1 ∣ D)
P(M2 ∣ D)

posterior odds

=
P(D ∣ M1)
P(D ∣ M2)

Bayes factor

P(M1)
P(M2)

prior odds
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Bayes factors
unpacked: ratio of marginal likelihoods

‣ Bayes factors look at ex ante (a priori) predictions 

‣ integration over priors → implicit (severe) punishment for model complexity 

‣ calculating Bayes factors is computationally hard for sophisticated models

P(D ∣ M1)
P(D ∣ M2)

=
∫ P(θ1 ∣ M1) P(D ∣ θ1, M1) dθ1

∫ P(θ2 ∣ M2) P(D ∣ θ2, M2) dθ2
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Bayes factors
notation & interpretation

read as: “BF in favor of 
model 1 over model 2”

BF12 =
P(D ∣ M1)
P(D ∣ M2)
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How to calculate Bayes factors

calculate marginal likelihood (for each model) 

‣ grid approximation 

‣ Monte Carlo sampling 

‣ importance / bridge sampling 

calculate Bayes factor (for a pair of models) 

‣ for nested models: 
• Savage-Dickey method 
• encompassing priors 

‣ transdimensional MCMC (not covered here)



computing 
marginal likelihoods

‣ grid approximation 

‣ Monte Carlo sampling 

‣ importance / bridge sampling
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Bayesian forgetting models

exponential model

power model
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Bayes factors from grid approximation

Substantial evidence for 
the exponential model.

Reminder: AIC scores



22

Bayes factors from Monte Carlo simulation
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more sampling-based approaches
 from naive to brutally efficient

P(D) = 𝔼Pprior(θ) [P(D ∣ θ)]
naive Monte Carlo

P(D) = 𝔼gIS(θ) [
Pprior(θ) P(D ∣ θ)

gIS(θ) ]

P(D) = 𝔼Pposterior(θ∣D) [ gHM(θ)
Pprior(θ) P(D ∣ θ) ]

−1

P(D) =
𝔼gproposal

(θ)[P(D ∣ θ) Pprior(θ) hbridge(θ)]
𝔼Pposterior(θ∣D) [hbridge(θ) gproposal(θ)]

importance sampling

generalized harmonic mean sampling

bridge sampling
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generalized harmonic mean sampler
example derivation P(D) = 𝔼Pposterior(θ∣D) [ gHM(θ)

Pprior(θ) P(D ∣ θ) ]
−1

1
P(D)

=
P(θ ∣ D)

P(D ∣ θ)P(θ)

=
P(θ ∣ D)

P(D ∣ θ)P(θ) ∫ gHM(θ)dθ

= ∫
gHM(θ)P(θ ∣ D)
P(D ∣ θ)P(θ)

dθ

≈
1
n

n

∑
θi∼P(θ∣D)

gHM(θi)
P(D ∣ θi)P(θi)

from Bayes rule

multiply by 1 = ∫ gHM(θ)dθ

since  is constant (see first line)
P(θ ∣ D)

P(D ∣ θ)P(θ)

express as expectation over posterior
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bridge sampling
derivation

P(D) = P(D)
∫ P(D ∣ θ) Pprior(θ) hbrdg(θ) gprpsl(θ)d θ

∫ P(D ∣ θ) Pprior(θ) hbrdg(θ) gprpsl(θ)d θ

=
∫ P(D ∣ θ) Pprior(θ) hbrdg(θ) gprpsl(θ)d θ

∫
P(D ∣ θ) Pprior(θ)

P(D) hbrdg(θ) gprpsl(θ)d θ

=
∫ P(D ∣ θ) Pprior(θ) hbrdg(θ) gprpsl(θ)d θ

∫ P(θ ∣ D) hbrdg(θ) gprpsl(θ)d θ

=
𝔼gproposal

(θ)[P(D ∣ θ) Pprior(θ) hbridge(θ)]
𝔼Pposterior(θ∣D) [hbridge(θ) gproposal(θ)]

P(D) =
𝔼gproposal

(θ)[P(D ∣ θ) Pprior(θ) hbridge(θ)]
𝔼Pposterior(θ∣D) [hbridge(θ) gproposal(θ)]

multiply by 1

constant  permeates integralP(D)

Bayes rule

express as expectations
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bridge sampling
choice of proposal & bridge

‣ proposal function 
• common choice (Overstall & Forster 2010): normal distribution 

whose first two moments match the posterior distribution 
- should resemble the posterior distribution 
- should have sufficient overlap with posterior distribution 

‣ bridge function 
• optimal choice (Meng & Wong 1996):  

 

• break circularity (in estimating ) by iterative approximation 

hbridge(θ) = [0.5 P(D ∣ θ) P(θ) + 0.5 P(D) gproposal(θ)]
P(D)

Gronau et al. (2017, “A tutorial on bridge sampling”)

P(D) =
𝔼gproposal

(θ)[P(D ∣ θ) Pprior(θ) hbridge(θ)]
𝔼Pposterior(θ∣D) [hbridge(θ) gproposal(θ)]

https://doi.org/10.1016/j.jmp.2017.09.005
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the bridgesampling package
example workflow

Gronau et al. (2020, “bridgesampling: An R Package for Estimating Normalizing Constants”) [PCKG] 

1. fit models (as usual) 2. update (more samples, include prior)

3. perform bridge sampling 4. compute Bayes factor

http://10.18637/jss.v092.i10


Bayes factors  
for nested models

‣ Savage-Dickey method 

‣ encompassing priors
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Nested models

‣ suppose that there are  continuous parameters of interest  

‣  is a model defined by  &  

‣  is properly nested under  if: 

•  assigns fixed values to some parameters  

•  

•

n θ = ⟨θ1, …, θn⟩

M1 P(θ ∣ M1) P(D ∣ θ, M1)

M0 M1

M0 θi = xi, …, θn = xn

lim
θi→xi,…,θn→xn

P(θ1, …, θi−1 ∣ θi, …, θn, M1) = P(θ1, …, θi−1 ∣ M0)

P(D ∣ θ1, …, θi−1, M0) = P(D ∣ θ1, …, θi−1, θi = xi, …, θn = xn, M1)

more here

https://michael-franke.github.io/intro-data-analysis/ch-03-05-Bayesian-testing-comparison.html#ch-03-07-hypothesis-testing-Bayes-Savage-Dickey
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Savage-Dickey method

more here

https://michael-franke.github.io/intro-data-analysis/ch-03-05-Bayesian-testing-comparison.html#ch-03-07-hypothesis-testing-Bayes-Savage-Dickey
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Encompassing model

‣ target hypothesis is interval-based:  

• let  be the complement of  

‣ an encompassing model  consists of: 

• likelihood   

• prior  

‣ the encompassed models  and share the 

likelihood function with  and have priors: 

•

H0 : θ ∈ I0

I1 I0

Me

P(D ∣ ω, θ, Me)
P(ω, θ ∣ Me)

M0 M1

Me
P(ω, θ ∣ Mi) = P(ω, θ ∣ Ii, Me)

more here

https://michael-franke.github.io/intro-data-analysis/ch-03-05-Bayesian-testing-comparison.html#ch-03-07-hypothesis-testing-Bayes-Savage-Dickey
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generalized Savage-Dickey method 
for encompassing models 

more here

https://michael-franke.github.io/intro-data-analysis/ch-03-05-Bayesian-testing-comparison.html#ch-03-07-hypothesis-testing-Bayes-Savage-Dickey


cross-validation 
ex ante & en route & ex post
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marginal likelihoods
prior or posterior predictives?

P(D ∣ M) = ∫ P(θ ∣ M) P(D ∣ θ, M) dθ

Bayes 
factors

deviance 
scoreLOOk-fold 

cross-validation

prior 
predictive

posterior 
predictive
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leave-one-out cross-validation

LPD =
n

∑
i=1

log P(y(new)
i ∣ y) =

n

∑
i=1

log∫ P(y(new)
i ∣ θ) P(θ ∣ y) dθ

≈
n

∑
i=1

log ( 1
S

S

∑
s=1

P(y(new)
i ∣ θs)) θs ∼ P(θ ∣ y) (from MCMC)

log pointwise density

leave-one-out cross-validation

how (log-)likely is each (new) 
datum  under the posterior 
predictive distribution given ?

y(new)
i

y

how (log-)likely is each old datum 
 under the posterior predictive 

distribution given ? 
yi

y−i
LOO =

n

∑
i=1

log P(yi ∣ y−i) =
n

∑
i=1

log∫ P(yi ∣ θ) P(θ ∣ y−i) dθ

estimated efficiently by Pareto-smoothed importance sampling
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leave-one-out cross-validation
example workflow

1. fit models (as usual)

2. compare loo scores with loo package

3. test if difference is substantial 
method by Ben Lambrecht (2018)


