Bayesian regression modeling: Theory & practice

Part 1: Bayesian basics & simple linear regression
Michael Franke



Motivation, background,
and formalities



Bayesian data analysis
At a glance

» BDA is about what we should believe given: Running example: 24/7

e some observable data, and » @ € [0;1]is the bias of a coin

 our model of how this data was generated » a priori any value of @is equally likely
(a.k.a. the data-generating process)

> b / heads in 24 fli
» our best friend will be Bayes rule WE ODServe / neads in 24 Tips

e e.g., for parameter inference:
P(@|D) « P) x P(D|0)

» what should we believe about 87

belief == prior == posterior

- _ Q
posterior prior likelihood 2
Q..
» or, for model comparison: o
PM, | D) P(D | M) P(M)) G %
— © 2-
P(M, | D) P(D|M,)  P(M,) T,
p&)steriVC)r odds Iéayesvfacto} pfiorvodéls % 0- ; ; i i
g 0.00 0.25 0.50 0.75 1.00
theta



Classical frequentist statistics
An op-ed

» based on null-hypothesis signhificance testing
ee.g.,isd =0.5

» intrinsically married to binary decision-making:

e accept or reject null-hypothesis
e prime example of “tyranny of the discontinuous mind"

» relies on “sampling distributions”
e hidden, and usually simplified assumptions about the
data-generating process

* rely on experimenter intentions, not an objective
picture of the DGP

SO

» point-estimates instead of distributions
 less informative & error-prone

» unprincipled; bag of tricks; hard to customize



Pros Cons

of BDA of BDA
» well-founded & totally general » not yet fully digested by community
» easily extensible / customizable » possibly computationally complex
» more informative / insightful » less ready-made, more hands-on
» stimulates view: “models as tools” » requires thinking

e last two points less valid than 10 years ago

ji OUT OF STEP




Main learning goals

1. understand key concepts of Bayesian data analysis
a. priors, posteriors & likelihood
b. prior & posterior predictives
c. Bayes factors
d. Bayesian computation (MCMC)

2. be able to apply hierarchical generalized linear regression modeling
a. determine the appropriate (kind of) model for a given problem
b. implement, run and interpret the Bayesian model
c. draw conclusions regarding evidence for/against research questions



Organization

» class from 92:00 — 14:30

» practical exercises for in class and at home
* no homework, no need to hand in exercises, no grades

» final take-home exam
e released on
e due on
e no group-work! individual submissions only!



Schedule

Day 1 Day 2 Day 3 Day 4 Day 5
Slot 1 basics of BDA priors & predictions generalized lin. model MCMC Model comparison
Slot2 simple lin. regression  categorical predictors X hierarchical regression X
Slot 3 X e ¢




Bayesian Basics
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Three-card problem
problem statement

» Sample a card (uniformly at random).
» Choose a side of that card to reveal (uniformly at random).

» What's the probability that the side you do not see is BLUE,
given that the side you see is BLUE?

/\




Three-card problem
data-generating process

1 .
choose side

1/3

select random card k&
1
3

1/ 3

choose side

/e

VAR

/e

choose side
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Conditional probability and Bayes rule

for the three-card problem

» conditional probability

P(A N B)
P(A | B) =
P(B)
» Bayesrule
P(A | B) = P(B | A)P(A)
P(B)

» Applied to three-card problem:
P(blue | card 1) P(card 1)

P(card 1 | blue) =

P(blue)
]
B 1)(3 _%
13

2

“reasoning from observed effect to latent cause via a
model of the data-generating process”

select random card

ll/s
l B
-

!

choose side

1/ V \1/2

/¢ /e
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Statistical models
likelihoods from a data-generating process

» A statistical model is a condensed formal representation, following common
conventional practices of formalization, of the assumptions we make about what the
data is and how it might have been generated by some (usually: stochastic) process.

> " (Box 1979)

» a Bayesian statistical model of stochastic process generating data D consists of:

e a vector of parameters @

» alikelihood function: P(D | )
e a prior distribution: P(6)

» among other things, we can use a model for inference:
e posterior distribution: P(6 | D) < P(D | 0) P(6)
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Binomial model
the ‘coin-flip’ model

» data: pair of numbers D = {k, N}
e NVisthe number of tosses

o kis the number of heads (successes)

» variable:

e Ois the number of heads (successes)
» uninformed prior:
6 ~ Beta(l,1)
> likelihood function:
k ~ Binomial(@, N)

our level of credence

N

w

N

belief == prior == posterior

N=24, k=7

0.00 0.25 0.50 0.75 1.00
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Simple linear regression model
for a single predictor variable

» data: npairs of numbers D = {{x;,y,),...{x,,V,)}
» X;is the i-th observation of the independent / predictor variable

» y.is the i-th observation of the dependent / to-be-predicted variable

> parameters:
* fyis the intercept parameter
o [, is the slope parameter

e 0lis the standard deviation of a normal distribution

» derived variable:

o u.is the linear predictor for observation

» priors (uninformed):
Do, P ~ Uniform(— o0, 00) log(6?%) ~ Uniform(— oo, 00)

» |ikelihood:
y; ~ Normal(y;, ) Wi = Po+x; - P



Likelihood, prior & posterior
for the coin-flip model
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Kinds of priors

o

Prior probability P(6
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read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
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Binomial likelihoods
two data sets

Binomial likelihood function for different data sets.
24/7
S N\ —_— — =

010- ................................ ................................. .................................. .......

0.05 =i R it e R .

0.00 - mmmm T - ; -
0.00 0.25 0.50 0.75 1.00

Likelihood P(D|8)

read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html

Posterior distributions
for different priors and likelihoods

uninformative weakly inf.
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Posterior

Posterior beliefs in © for different priors and data.
24/7

King of France
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read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
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https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html

Posteriors from conjugacy

» prior P(0) is a conjugate prior for likelihood P(D | 0)
Iff prior P(6) and posterior P(0 | D) are the same
kind of probability distribution, e.g.:

e prior: 6 ~ Beta(l,1)
e posterior: 0 | D ~ Beta(8,18)

» claim: the beta distribution is a conjugate prior for

the binomial likelihood function
e proof:

PO | k, N) x Binomial(k; N, ) Beta(@ | a, b)
PO | k,N)x 01—V *o=1 (1 - 9P~
PO | k,N) pk+a—1 (1 — Q)N—k+b—1

PO | k,N)=Beta(@|k+a,N—k+ b)

posterior

read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html

Approximating distributions via sampling
our go-to solution for approximating posterior distributions beyond conjugacy

» we can approximate any probability
distribution by either:

e a large set of representative samples; or
e an oracle that returns a sample if needed.

Temporal development of the proportion of draws from an urn

0.80

| canyou a
sample give!

proportion of 'black’ balls drawn

—\mev .

0.65

0 2500 5000 7500 10000

number of draws

227



Bayesian parameter estimation



Sequential updating

for the beta-binomial model

» sequence of updating does not matter

e any order of single-observation updates

e any ‘chunking’: whole data set, different
subsets in whatever sequence (as long as
disjoined)

[( )

a=1Db=1

a=2 b=1

a=3 b=1

\

a=1Db=2

a=2 b=2

a=3 b=2

a=1Db=3

read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html

Sequential updating

general proof

» claim:if {D,, D,} is a partition of D, then P(6 | D) «x P(6 | D) P(D, | 0)

» sketch of proof:
P©®) P(D | )
| P(@) P(D | 6)do’
P P(D,|0) P(D,|0)
~ [P©) P(D, | 0) P(D, | 6)d¢/

___ PO P, 0) PWD, | 0) [for random positive k]

= [P(©) P(D, | 0) P(D, | 0)dO"
P(6) P(D, | 6)

—— P(D, | 0) . . .
— [rules of integration; basic calculus]

J P(Q’) PI(CDl | 9/) P(D2 ‘ 9/)d9/

___PO| D) P(D, | 6)
[P©'| Dy) P(D, | 6)dO"

P@| D) =

[from multiplicativity of likelihood]

[Bayes rule with k = JP(&’)P(D1 | 6)dO]

read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html

Parameter estimation
point- and interval-valued estimates

» Bayes' rule for parameter estimation:

PO | D) = P(D | 6) P(0) -
J P(D | 6) P(O) db osterior

expectation: 0.308

» common point estimates ( ):
 maximum likelihood estimate (MLE)
e maximum a posteriori (MAP)
e posterior mean / expected value 2

Posterior probability Py(6 | D)

» common interval estimates (

): (Cred.Int.: 0.14 - 0.48]
e confidence intervals 0
e credible intervals 00 %25 %50 1 o6

read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-04-parameter-estimation-points-intervals.html

Point-valued estimates
MLE, MAP and (posterior) expected value

» MLE:

arg max P(D | 6)
%

e doesn’t take prior into account (not Bayesian)
* not necessarily unique

» MAP:

arg max P(6 | D)
0

e local / does not consider full distribution (not fully Bayesian)
* increasingly uninformative in larger parameter spaces
* not necessarily unique

» posterior mean / expected valued

* holistic / depends on full distribution (“genuinely Bayesian”)

 always unique (for proper priors/posteriors) ead more here


https://michael-franke.github.io/intro-data-analysis/ch-03-04-parameter-estimation-points-intervals.html

Bayesian hypothesis testing /w posterior credible intervals
Il caveat: it is controversial whether this is the best (Bayesian) approach to hypothesis testing !!!

» consider an interval-based hypothesis: 0 € [

o e.g., inequality-based: “coin is biased towards heads” 8 > 0.5

e e.g. aregion of practical equivalence [ROPE]: an ¢-region around some 6*: [ = [0* — ¢, O* + €]

» if [[; u]is a posterior credible interval for 8, we consider this:

 reason to accept hypothesis [ if [[; 1] is contained entirely in [;

 reason to reject hypothesis /if [[; 1] and I have no overlap;
e withhold judgement otherwise.

» this approach is “categorical” (accept, reject, suspend) and not quantitative

read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-07-hypothesis-testing-Bayes.html

Posterior plausibility of interval-based hypotheses
this is NOT a testing approach, just one way of quantifying support

» consider an interval-based hypothesis @ € [ as before

» the posterior plausibility of  given a model M and the
data D is just the posterior probability: P(6 € I | D)

» not a notion of observational evidence:

o if prioris high for / and data is uninformative, posterior
plausibility can be high

» good-enough first heuristic when priors are “unbiased”
regarding /

» more on hypothesis testing later

read more here


https://michael-franke.github.io/intro-data-analysis/ch-03-07-hypothesis-testing-Bayes.html

Simple linear regression
likelihood & Bayesian posterior



Murder data

annual murder rate, average income, unemployment rates and population

## # A tibble: 20 x 4 Murder rate data
## murder_rate low_income unemployment population murder_rate low _income Inemploymen population
## <db 1> <db1> <dbl> <db1>
0.03- 3
w1 11.2 16.5 6.2 587000 S
0.02- Corr: Corr: Corr: %
## 2 13-4 20-5 6-4 643000 0.84 0.865 -0.0671 Iﬂ
## 3 40.7 26.3 9.3 635000 0.01- 0
(9]
## 4 5.3 16.5 5.3 692000 0.00-
## 5 24.8 19.2 7.3 1248000 . _
24 - * °)
## 6 12.7 16.5 5.9 643000 K IE
21- ° o ° Corr: Corr: =5
##t 7 20.9 20.2 6.4 1964000 . e i =
# 8 35.7 21.3 7.6 1531000 R =
## 9 8.7 17.2 4.9 713000 15- ®
## 10 9.6 14.3 6.4 749000 - . . g
## 11 14.5 18.1 6 7895000 . * e + C s 2
## 12 26.9 23.1 7.4 762000 . - .« "o cor B
## 13 15.7 19.1 5.8 2793000 NS A c .0 | 3
[ [ ] m
## 14 36.2 24.7 8.6 741000 5-° . -
## 15 18.1 18.6 6.5 625000 8e+06- . . |
## 16 28.9 24.9 8.3 854000 66406 - 3
©
## 17 14.9 17.9 6.7 716000 c
4e+06 - )
## 18 25.8 22.4 8.6 921000 « ° * . o Kf\ =
2e+006 - ° ° ° -
M A -4 [ ) . [ ] ® ..
## 19 21.7 20.2 8 595000 comes™ se s geele Hli et Wl g
371 ## 20 25.7 16.9 6.7 3353000 10 20 30 40 15 18 21 24 5 6 7 8 9 2e+08e+06e+08e+06
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Predicting murder rate based on unemployment rate
some wild linear guessing

murder rate

40-

30-

10-

7
unemployment

We are to predict the murder rate

y; of arandomly drawn city 1. We
know that city’s unemployment

rate, x;, but nothing more.

Let’s just assume the following
linear relationship to make a
prediction b/c why not?!?

How good is this prediction?




How good is any given prediction?
guantifying distance or likelihood

Distance-based approach

o Residual Sum-of-Squares:

. . RSS = Z (y; — yi)z
i=1

40 -

» no predictions about spread
around linear predictor

W
-
I

murder rate
N
(@)

Likelihood-based approach:
Normal likelihood:

LH = H«/V()’i | u =y, 0)
i=1

10' ®

» fully predictive

unemployment




Likelihood-based simple linear regression

40 -

o

lower likelihood

> likelihood:
y; ~ Normal(u,, o)

Hi = Po+x; - P
» differential likelihood:

» parameter triples (f3,, 5, 6) can be better or worse

w
(@)
I

murder rate
N
o

10-

» higher vs. lower likelihood P(D | f,, ;, 0) é " unemployment | é
> maximum-likelihood solution: * higher likelihood
arg max P(D | fo, py, 0)
PoPr-0

e standard (frequentist) solution
e MLE corresponds to MAP for “flat” priors

murder rate
N
(@]

» Bayesian approach: full posterior distribution

10-

P(py, p1.0 | D) < P(D | py, p1, 06) P(Py, f;, 0) S ; ; ;

unemployment




Bayesian linear regression in R
using BRMS and Stan

» R package BRMS provides high-level interface for fit brms murder <— brm!
BayeSian linear regression # specify what to explain 1in terms of what
» models are specified with R’s formula syntax i st e ElalLe) Sk

. . . . formula = murder_rate ~ unemployment,
» returns samples from the posterior distribution

e alternatives: MAPs, variational inference

# which data to use

data = murder data

» runs probabilistic programming language Stan in )
the background

e powerful, cutting-edge tool for Bayesian computation
e strong, non-commercial development team
 many interfaces: stand-alone, R, Python, Julia, ...




Navigating BRMS output

summary(fit brms_murder)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: murder_rate ~ unemployment
Data: murder_data (Number of observations: 20)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000

Population-Level Effects:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk _ESS Tail ESS
main model parameters Intercept ~28.48 7.32  -42.05 -13.79 1.00 3014 2362

unemp loyment 7.07 1.04 4.97 9.04 1.00 2978 2451

Family Specific Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sigma 5.42 0.96 3.88 7.63 1.00 2664 2196

additional model parameters

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat 1is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

36



Mouse-tracking data on
typicality in category
ecisions
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Mouse-tracking
Hand-movement during decision making

» general idea: motor-execution
provides information about the
ongoing decision process
e uncertainty
* gradual evidence accumulation
e change-of-mind
e time-point of decision

> many subtle design decisions

e click vs touch
 move horizontally or vertically




Mouse-tracking

common measures of mouse-trajectories

» raw data are lists of triples
e (time, x-position, y-position)

» commonly used measures

e area-under the curve (AUC)

- area between the mouse trajectory and a
straight line from start to selected option

 maximal deviation (MAD)

- maximum distance between trajectory and
straight line from start to selected option

* correctness
- whether choice of option was correct or not

e reaction time (RT)
- how long did the movement last in total

 type of trajectory

- result of clustering analysis based on shape of
the trajectories (usually some 3-5 categories)

o X-flips
- number of times the trajectory crossed the
39 vertical middle line (at x = Q)

Mammal
\

Fish

straight

curved

v 12%

X110 1} "dx3

|

10%

yonoyj ;| "dx3
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Running example
category recognition for typical vs atypical exemplars

» materials & procedure

e participants read an animal name (e.g. ‘dolphin’)

e they choose the true category the animal belongs
to (e.g., ‘fish’ or ‘mammal’)

e some trigger words are typical others atypical
representatives of the true category

» methodological investigation:
e two groups: click vs touch to select category

» hypothesis: typical exemplars are easier to

categorize than atypical ones

- fewer mistakes

- smaller RTs, AUC, MAD

- less x-flips

- less “change-of-mind” curve types

» research question (methods): any
differences between click & touch selection?

variables used in the data set

trial_id = unique id for individual trials

MAD = maximal deviation into competitor space

AUC = area under the curve

xpos_flips =the amount of horizontal direction changes

RT =reaction time in ms

prototype_label = different categories of prototypical movement strategies
subject_id = unique id for individual participants

group = groups differ in the response design (click vs. touch)
condition = category membership (Typical vs. Atypical)

exemplar =the concrete animal

category_left =the category displayed on the left

category_right =the category displayed on the right
category_correct = the category that is correct

response = the selected category

correct = whether or not the response matches category_correct

Kieslich et al's (2019) replication of Dale et al!s (2003) experiment



