
Michael Franke

Bayesian regression modeling: Theory & practice 
Part 1: Bayesian basics & simple linear regression



Motivation, background, 
and formalities
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Bayesian data analysis
At a glance

‣ BDA is about what we should believe given: 
• some observable data, and 
• our model of how this data was generated     

(a.k.a. the data-generating process) 

‣ our best friend will be Bayes rule 
• e.g., for parameter inference: 

 

• or, for model comparison: 
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Running example: 24/7 

‣  is the bias of a coin 

‣ a priori any value of  is equally likely 

‣ we observe 7 heads in 24 flips 

‣ what should we believe about  ?

θ ∈ [0; 1]

θ

θ
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Classical frequentist statistics
An op-ed

‣ based on null-hypothesis significance testing 
• e.g., is  

‣ intrinsically married to binary decision-making: 
• accept or reject null-hypothesis 
• prime example of “tyranny of the discontinuous mind" 

‣ relies on “sampling distributions” 
• hidden, and usually simplified assumptions about the 

data-generating process 
• rely on experimenter intentions, not an objective 

picture of the DGP 

‣ point-estimates instead of distributions 
• less informative & error-prone 

‣ unprincipled; bag of tricks; hard to customize 

θ = 0.5
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Pros Cons
of BDA of BDA

‣ well-founded & totally general 

‣ easily extensible / customizable 

‣ more informative / insightful 

‣ stimulates view: “models as tools”

‣ not yet fully digested by community 

‣ possibly computationally complex 

‣ less ready-made, more hands-on 

‣ requires thinking (wait, that’s a pro!) 
• last two points less valid than 10 years ago



Main learning goals

1. understand key concepts of Bayesian data analysis 
a. priors, posteriors & likelihood 

b. prior & posterior predictives 

c. Bayes factors 

d. Bayesian computation (MCMC) 

2. be able to apply hierarchical generalized linear regression modeling 
a. determine the appropriate (kind of) model for a given problem 

b. implement, run and interpret the Bayesian model 

c. draw conclusions regarding evidence for/against research questions
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Organization

‣ class from 9:00 — 14:30 

‣ practical exercises for in class and at home 
• no homework, no need to hand in exercises, no grades 

‣ final take-home exam 
• released on FILL ME 
• due on FILL ME 
• no group-work! individual submissions only!
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Schedule
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Day 1 Day 2 Day 3 Day 4 Day 5

Slot 1 basics of BDA priors & predictions generalized lin. model MCMC Model comparison

Slot 2 simple lin. regression categorical predictors 🛠 hierarchical regression 🛠

Slot 3 🛠 🛠 🛠



Bayesian Basics
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Three-card problem
 problem statement

‣ Sample a card (uniformly at random). 

‣ Choose a side of that card to reveal (uniformly at random). 

‣ What’s the probability that the side you do not see is BLUE, 
given that the side you see is BLUE?

1 2 3
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Three-card problem
data-generating process

select random card
1/3 1/3

1/3

choose side choose side choose side

1 0 1/2 1/2 0 1

1/3 0 1/6 1/6 0 1/3

1 2 3
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Conditional probability and Bayes rule
for the three-card problem

‣ conditional probability 

 

‣ Bayes rule 

 

‣ Applied to three-card problem: 

 

“reasoning from observed effect to latent cause via a 
model of the data-generating process” 

P(A ∣ B) =
P(A ∩ B)

P(B)

P(A ∣ B) =
P(B ∣ A)P(A)

P(B)

P(card 1 ∣ blue) =
P(blue ∣ card 1) P(card 1)

P(blue)

=
1 × 1

3
1
2

=
2
3
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Statistical models
likelihoods from a data-generating process

‣ A statistical model is a condensed formal representation, following common 
conventional practices of formalization, of the assumptions we make about what the 
data is and how it might have been generated by some (usually: stochastic) process. 

‣ “All models are wrong, but some are useful.” (Box 1979)  

‣ a Bayesian statistical model of stochastic process generating data  consists of: 

• a vector of parameters  

• a likelihood function:  

• a prior distribution:  

‣ among other things, we can use a model for inference: 
• posterior distribution: 

D
θ

P(D ∣ θ)
P(θ)

P(θ ∣ D) ∝ P(D ∣ θ) P(θ)
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Binomial model
the ‘coin-flip’ model

‣ data: pair of numbers  
•  is the number of tosses 

•  is the number of heads (successes) 

‣ variable: 
•  is the number of heads (successes) 

‣ uninformed prior: 

 

‣ likelihood function: 

 

‣ conventions for model graphs: 
• circles / squares: continuous / discrete variables 
• white / gray nodes: latent / observed variables

D = {k, N}
N
k

θ

θ ∼ Beta(1,1)

k ∼ Binomial(θ, N)
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N=24, k=7
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Simple linear regression model
for a single predictor variable

‣ data:  pairs of numbers  

•  is the -th observation of the independent / predictor variable 

•  is the -th observation of the dependent / to-be-predicted variable 

‣ parameters: 
•  is the intercept parameter 

•  is the slope parameter 

•  is the standard deviation of a normal distribution 

‣ derived variable: [shown in node w/ double lines] 
•  is the linear predictor for observation  

‣ priors (uninformed): 
         

‣ likelihood: 
                             

n D = {⟨x1, y1⟩, …⟨xn, yn⟩}
xi i
yi i

β0

β1
σ

μi i

β0, β1 ∼ Uniform(−∞, ∞) log(σ2) ∼ Uniform(−∞, ∞)

yi ∼ Normal(μi, σ) μi = β0 + x1 ⋅ β1

xi

yi

σ

βo β1

μi

1 ≤ i ≤ n



Likelihood, prior & posterior 
for the coin-flip model
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Kinds of priors 
for a Binomial (‘coin flip’) model

read more here

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
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Binomial likelihoods
two data sets

read more here

N=24, k=7

N=311, k=109

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
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Posterior distributions
for different priors and likelihoods

read more here

N=24, k=7

N=311, k=109

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
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Computing posterior distributions
problem of computational complexity

read more here

P(θ ∣ D) =
P(D ∣ θ) P(θ)

∫ P(D ∣ θ) P(θ) dθ
✓fast & easy

✓fast & easy

❌☠ possibly intractable ☠❌

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
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Posteriors from conjugacy
closed-form posteriors from clever choice of priors

read more here

‣ prior  is a conjugate prior for likelihood  
iff prior  and posterior  are the same 
kind of probability distribution, e.g.: 
• prior:  

• posterior:  

‣ claim: the beta distribution is a conjugate prior for 
the binomial likelihood function 
• proof: 

P(θ) P(D ∣ θ)
P(θ) P(θ ∣ D)

θ ∼ Beta(1,1)
θ ∣ D ∼ Beta(8,18)

P(θ ∣ k, N) ∝ Binomial(k; N, θ) Beta(θ | a, b)
P(θ ∣ k, N) ∝ θk (1 − θ)N−k θa−1 (1 − θ)b−1

P(θ ∣ k, N) ∝ θk+a−1 (1 − θ)N−k+b−1

P(θ ∣ k, N) = Beta(θ | k + a, N − k + b) prior
posterior

likelihood

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
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Approximating distributions via sampling
our go-to solution for approximating posterior distributions beyond conjugacy

‣ we can approximate any probability 
distribution by either: 
• a large set of representative samples; or 
• an oracle that returns a sample if needed.

I can you a 
sample give!



Bayesian parameter estimation



Sequential updating
for the beta-binomial model

‣ sequence of updating does not matter 
• any order of single-observation updates 
• any ‘chunking’: whole data set, different 

subsets in whatever sequence (as long as 
disjoined) 

‣ “today’s posterior is tomorrow’s prior”

read more here

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html


Sequential updating
general proof

P(θ ∣ D) =
P(θ) P(D ∣ θ)

∫ P(θ′ ) P(D ∣ θ′ )dθ′ 

=
P(θ) P(D1 ∣ θ) P(D2 ∣ θ)

∫ P(θ′ ) P(D1 ∣ θ′ ) P(D2 ∣ θ′ )dθ′ 

[from multiplicativity of likelihood]

=
P(θ) P(D1 ∣ θ) P(D2 ∣ θ)

k
k

∫ P(θ′ ) P(D1 ∣ θ′ ) P(D2 ∣ θ′ )dθ′ 

[for random positive k]

=
P(θ) P(D1 ∣ θ)

k P(D2 ∣ θ)

∫ P(θ′ ) P(D1 ∣ θ′ )
k P(D2 ∣ θ′ )dθ′ 

[rules of integration; basic calculus]

=
P(θ ∣ D1) P(D2 ∣ θ)

∫ P(θ′ ∣ D1) P(D2 ∣ θ′ )dθ′ 

[Bayes rule with k = ∫ P(θ)P(D1 ∣ θ)dθ]

read more here

‣ claim: if  is a partition of , then  

‣ sketch of proof:

{D1, D2} D P(θ ∣ D) ∝ P(θ ∣ D1) P(D2 ∣ θ)

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html


Parameter estimation
point- and interval-valued estimates

‣ Bayes’ rule for parameter estimation: 

 

‣ common point estimates (“best” values): 
• maximum likelihood estimate (MLE) 
• maximum a posteriori (MAP) 
• posterior mean / expected value 

‣ common interval estimates (range of 
“good” values): 
• confidence intervals 
• credible intervals

P(θ ∣ D) =
P(D ∣ θ) P(θ)

∫ P(D ∣ θ) P(θ) dθ

read more here

https://michael-franke.github.io/intro-data-analysis/ch-03-04-parameter-estimation-points-intervals.html


Point-valued estimates
MLE, MAP and (posterior) expected value

read more here

‣MLE: 

 

• doesn’t take prior into account (not Bayesian) 
• not necessarily unique 

‣MAP: 

 

• local / does not consider full distribution (not fully Bayesian) 
• increasingly uninformative in larger parameter spaces 
• not necessarily unique 

‣posterior mean / expected valued 

 

• holistic / depends on full distribution (“genuinely Bayesian”) 
• always unique (for proper priors/posteriors)

arg max
θ

P(D ∣ θ)

arg max
θ

P(θ ∣ D)

𝔼P(θ∣D) = ∫ θ P(θ ∣ D) dθ

https://michael-franke.github.io/intro-data-analysis/ch-03-04-parameter-estimation-points-intervals.html


Bayesian hypothesis testing /w posterior credible intervals
!!! caveat: it is controversial whether this is the best (Bayesian) approach to hypothesis testing !!!

‣ consider an interval-based hypothesis:  

• e.g., inequality-based: “coin is biased towards heads”  

• e.g. a region of practical equivalence [ROPE]: an -region around some :  

‣ if  is a posterior credible interval for , we consider this: 

• reason to accept hypothesis  if  is contained entirely in ; 

• reason to reject hypothesis  if  and  have no overlap; 
• withhold judgement otherwise. 

‣ this approach is “categorical” (accept, reject, suspend) and not quantitative

θ ∈ I
θ > 0.5

ϵ θ* I = [θ* − ϵ, θ* + ϵ]

[l; u] θ
I [l; u] I

I [l; u] I

read more here

https://michael-franke.github.io/intro-data-analysis/ch-03-07-hypothesis-testing-Bayes.html


Posterior plausibility of interval-based hypotheses
this is NOT a testing approach, just one way of quantifying support

read more here

‣ consider an interval-based hypothesis  as before 

‣ the posterior plausibility of  given a model  and the 

data  is just the posterior probability:  

‣ not a notion of observational evidence: 
• if prior is high for  and data is uninformative, posterior 

plausibility can be high 

‣ good-enough first heuristic when priors are “unbiased” 
regarding  

‣ more on hypothesis testing later

θ ∈ I
I M

D P(θ ∈ I ∣ D)

I

I

https://michael-franke.github.io/intro-data-analysis/ch-03-07-hypothesis-testing-Bayes.html


Simple linear regression 
likelihood & Bayesian posterior
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Murder data
annual murder rate, average income, unemployment rates and population

annual murders per 
million inhabitants

percentage inhabitants 
with low income

percentage inhabitants 
who are unemployed

total population
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Predicting murder rate based on unemployment rate
some wild linear guessing

We are to predict the murder rate 

 of a randomly drawn city . We  

know that city’s unemployment 

rate, , but nothing more. 

Let’s just assume the following 
linear relationship to make a 
prediction b/c why not?!?

yi i

xi

̂yi = 4 + 2xi

How good is this prediction?
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How good is any given prediction?
quantifying distance or likelihood

Distance-based approach 

Residual Sum-of-Squares:

RSS =
n

∑
i=1

( ̂yi − yi)2

Likelihood-based approach: 

Normal likelihood:

LH =
n

∏
i=1

𝒩(yi ∣ μ = ̂yi, σ)

‣ no predictions about spread 
around linear predictor

‣ fully predictive
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Likelihood-based simple linear regression

lower likelihood

higher likelihood

‣ likelihood: 

 

 

‣ differential likelihood: 
• parameter triples  can be better or worse 

• higher vs. lower likelihood  

‣ maximum-likelihood solution: 

 

• standard (frequentist) solution 
• MLE corresponds to MAP for “flat” priors 

‣ Bayesian approach: full posterior distribution 

yi ∼ Normal(μi, σ)
μi = β0 + x1 ⋅ β1

⟨β0, β1, σ⟩
P(D ∣ β0, β1, σ)

arg max
β0,β1,σ

P(D ∣ β0, β1, σ)

P(β0, β1, σ ∣ D) ∝ P(D ∣ β0, β1, σ) P(β0, β1, σ)
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Bayesian linear regression in R
 using BRMS and Stan

‣ R package BRMS provides high-level interface for 
Bayesian linear regression 

‣ models are specified with R’s formula syntax 

‣ returns samples from the posterior distribution 
• alternatives: MAPs, variational inference 

‣ runs probabilistic programming language Stan in 
the background 
• powerful, cutting-edge tool for Bayesian computation 
• strong, non-commercial development team 
• many interfaces: stand-alone, R, Python, Julia, …
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Navigating BRMS output

model & data we used

information about sampling 
(more on this later)

main model parameters

additional model parameters

information about sampling 
(more on this later)



Mouse-tracking data on 
typicality in category 
decisions
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Mouse-tracking
Hand-movement during decision making

‣ general idea: motor-execution 
provides information about the 
ongoing decision process 
• uncertainty 
• gradual evidence accumulation 
• change-of-mind 
• time-point of decision 
• …  

‣ many subtle design decisions 
• click vs touch 
• move horizontally or vertically 
• …
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Mouse-tracking
common measures of mouse-trajectories

‣ raw data are lists of triples 
• (time, x-position, y-position) 

‣ commonly used measures 
• area-under the curve (AUC) 

- area between the mouse trajectory and a 
straight line from start to selected option 

• maximal deviation (MAD) 
- maximum distance between trajectory and 

straight line from start to selected option 

• correctness 
- whether choice of option was correct or not 

• reaction time (RT) 
- how long did the movement last in total 

• type of trajectory 
- result of clustering analysis based on shape of 

the trajectories (usually some 3-5 categories)  

• x-flips 
- number of times the trajectory crossed the 

vertical middle line (at x = 0) 

•
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Running example
category recognition for typical vs atypical exemplars

‣ materials & procedure 
• participants read an animal name (e.g. ‘dolphin’) 
• they choose the true category the animal belongs 

to (e.g., ‘fish’ or ‘mammal’) 
• some trigger words are typical others atypical 

representatives of the true category 

‣ methodological investigation: 
• two groups: click vs touch to select category 

‣ hypothesis: typical exemplars are easier to 
categorize than atypical ones 

- fewer mistakes  
- smaller RTs, AUC, MAD 
- less x-flips 
- less “change-of-mind” curve types 

‣ research question (methods): any 
differences between click & touch selection?

variables used in the data set

Kieslich et al.’s  (2019) replication of Dale et al.’s (2003) experiment


