Bayesian regression modeling: Theory & practice Part 1: Bayesian basics & simple linear regression

Michael Franke

Motivation, background, and formalities

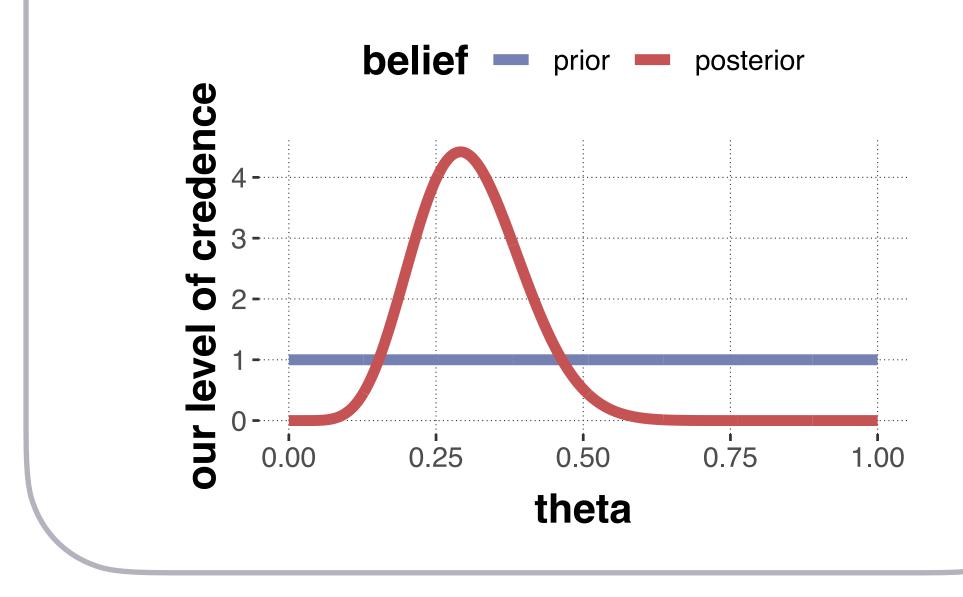
Bayesian data analysis At a glance

- BDA is about what we should believe given:
 - some observable data, and
 - our model of how this data was generated (a.k.a. the data-generating process)
- our best friend will be Bayes rule
 - e.g., for **parameter inference**:

 $\begin{array}{l} \underbrace{P(\theta \mid D) \propto P(\theta) \times P(D \mid \theta)}_{\text{posterior}} & \underbrace{P(\theta) \times P(D \mid \theta)}_{\text{prior}} \\ \text{or, for model comparison:} \\ \\ \frac{P(M_1 \mid D)}{P(M_2 \mid D)} &= \frac{P(D \mid M_1)}{P(D \mid M_2)} & \frac{P(M_1)}{P(M_2)} \\ \\ \end{array}$

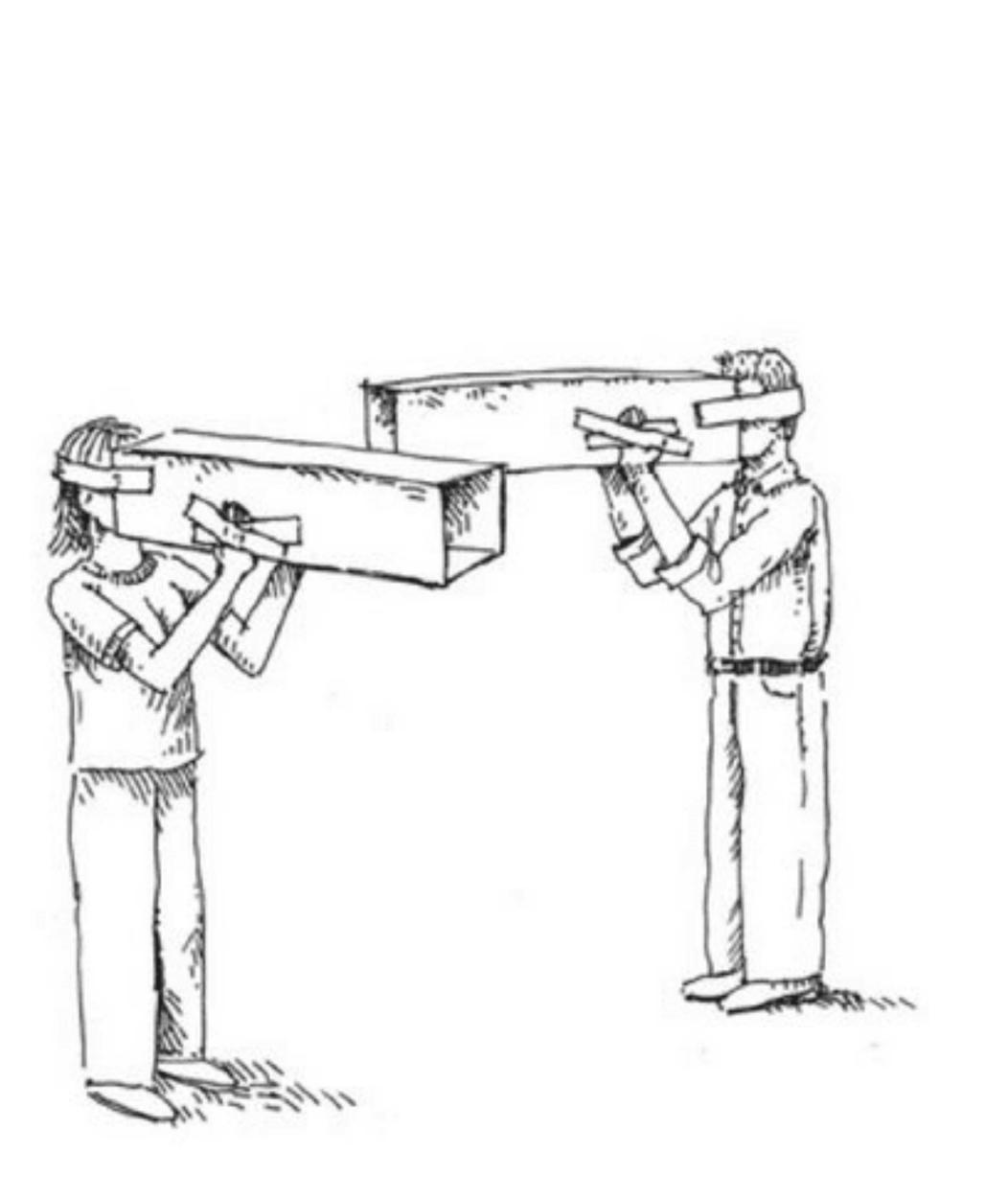
Running example: 24/7

- $\theta \in [0; 1]$ is the bias of a coin
- *a priori* any value of θ is equally likely
- we observe 7 heads in 24 flips
- what should we believe about θ ?



Classical frequentist statistics An op-ed

- based on null-hypothesis significance testing
 - e.g., is $\theta = 0.5$
- Intrinsically married to binary decision-making:
 - accept or reject null-hypothesis
 - prime example of "tyranny of the discontinuous mind"
- relies on "sampling distributions"
 - hidden, and usually simplified assumptions about the data-generating process
 - rely on experimenter intentions, not an objective picture of the DGP
- point-estimates instead of distributions
 - less informative & error-prone
- unprincipled; bag of tricks; hard to customize



Pros of BDA

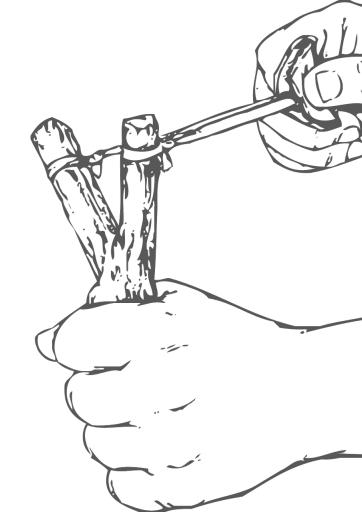
- well-founded & totally general
- easily extensible / customizable
- more informative / insightful
- stimulates view: "models as tools"

- not yet fully digested by community
- possibly computationally complex
- less ready-made, more hands-on
- requires thinking (wait, that's a pro!)
 - last two points less valid than 10 years ago

Main learning goals

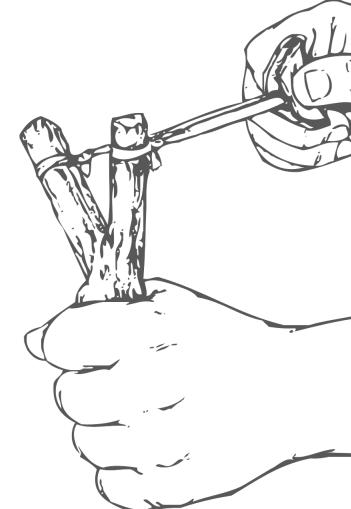
1. understand key concepts of Bayesian data analysis

- a. priors, posteriors & likelihood
- b. prior & posterior predictives
- c. Bayes factors
- d. Bayesian computation (MCMC)
- 2. be able to apply hierarchical generalized linear regression modeling a. determine the appropriate (kind of) model for a given problem b. implement, run and interpret the Bayesian model c. draw conclusions regarding evidence for/against research questions



Organization

- ► class from 9:00 14:30
- practical exercises for in class and at home • no homework, no need to hand in exercises, no grades
- final take-home exam
 - released on FILL ME
 - due on FILL ME
 - no group-work! individual submissions only!



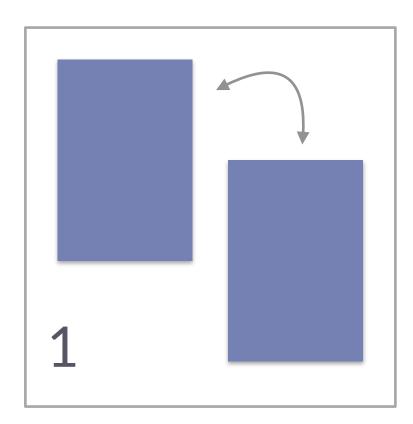
Schedule

	Day 1	Day 2	Day 3	Day 4	Day 5
Slot 1	basics of BDA	priors & predictions	generalized lin. model	MCMC	Model comparisc
Slot 2	simple lin. regression	categorical predictors		hierarchical regression	
Slot 3					

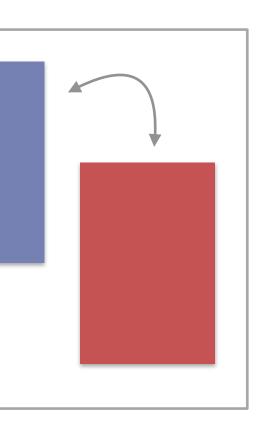
Bayesian Basics

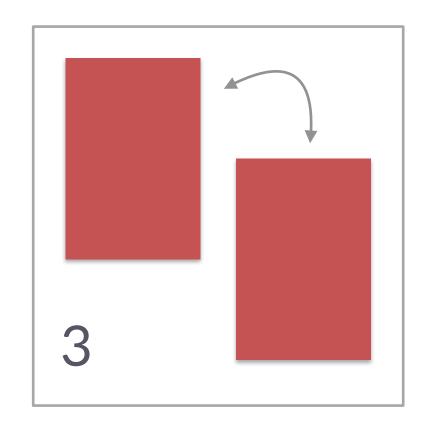
Three-card problem problem statement

- Sample a card (uniformly at random).
- Choose a side of that card to reveal (uniformly at random).
- What's the probability that the side you do not see is BLUE, given that the side you see is BLUE?

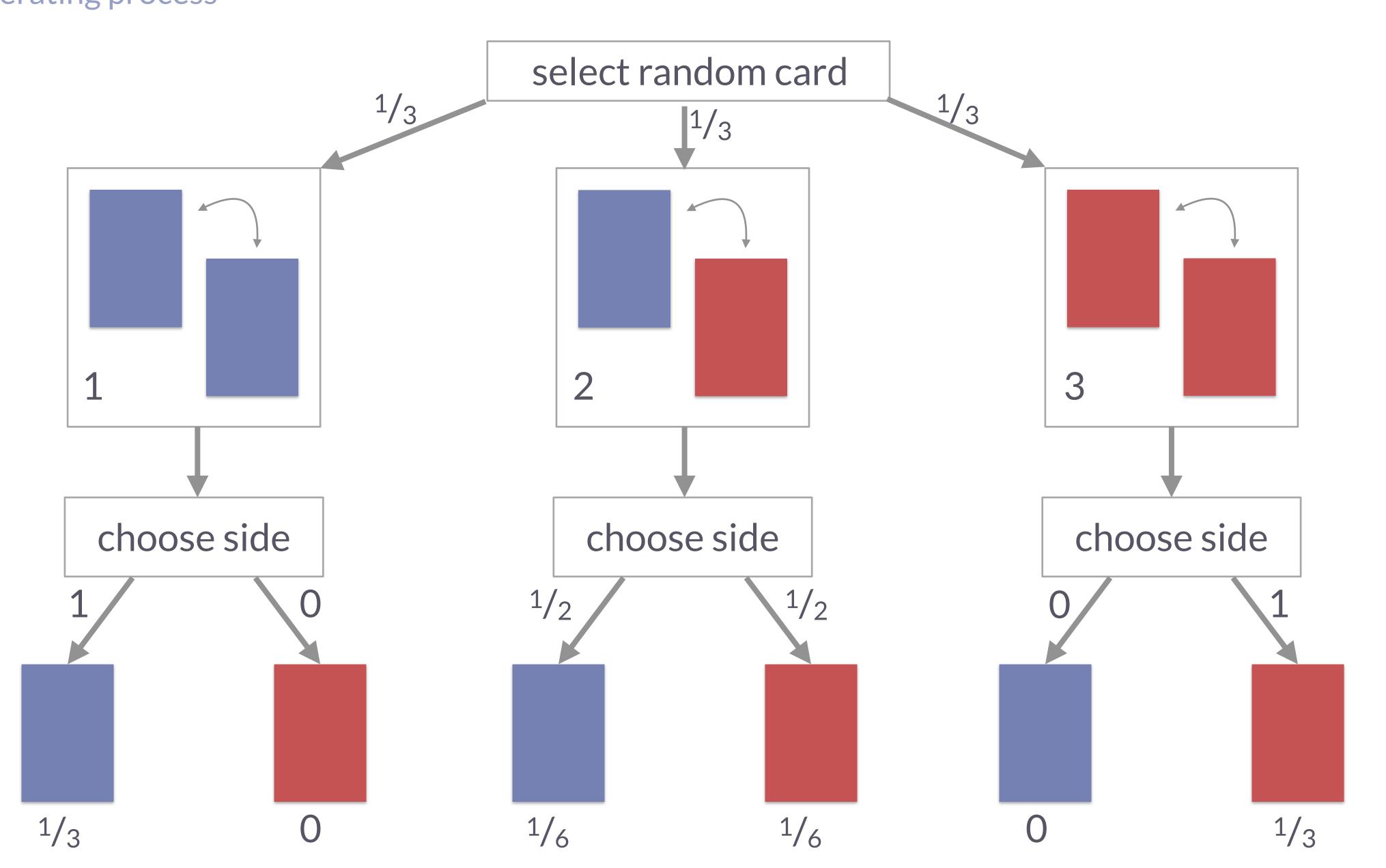


mly at random). not see is **BLUE**,





Three-card problem data-generating process



Conditional probability and Bayes rule for the three-card problem

conditional probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

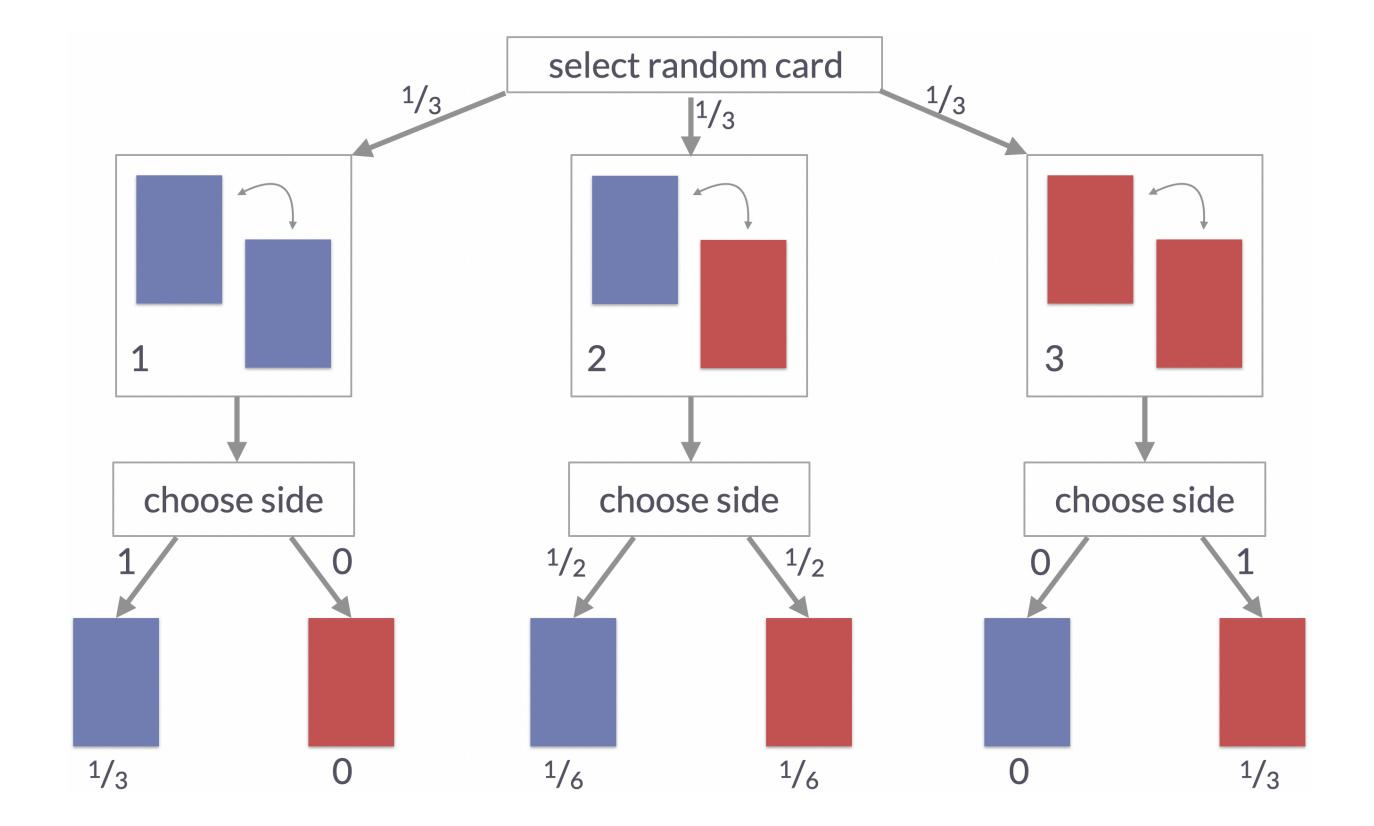
Bayes rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Applied to three-card problem:

$$P(\operatorname{card} 1 \mid \operatorname{blue}) = \frac{P(\operatorname{blue} \mid \operatorname{card} 1) \ P(\operatorname{card} 1)}{P(\operatorname{blue})}$$
$$= \frac{1 \times \frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

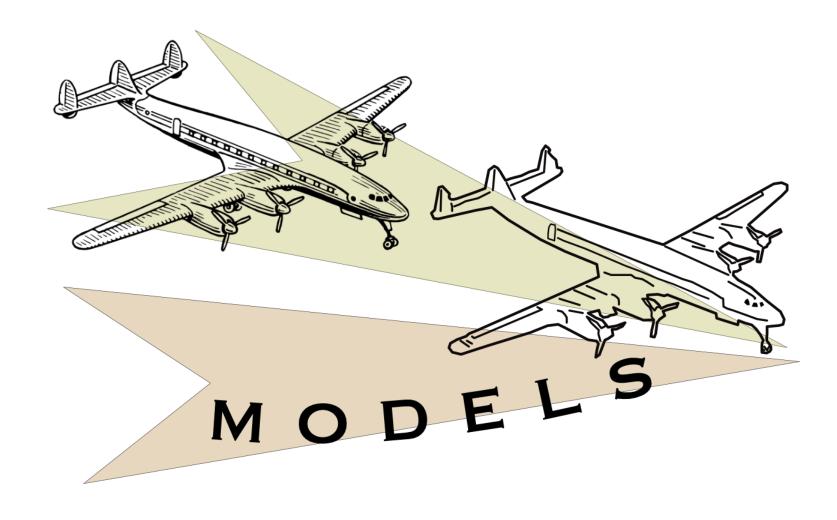
"reasoning from observed effect to latent cause via a model of the data-generating process"



Statistical models

likelihoods from a data-generating process

- A statistical model is a condensed formal representation, following common conventional practices of formalization, of the assumptions we make about what the data is and how it might have been generated by some (usually: stochastic) process.
- "All models are wrong, but some are useful." (Box 1979)
- a Bayesian statistical model of stochastic process generating data D consists of:
 - a vector of **parameters** θ
 - a likelihood function: $P(D \mid \theta)$
 - a **prior** distribution: $P(\theta)$
- among other things, we can use a model for inference:
 - **posterior** distribution: $P(\theta \mid D) \propto P(D \mid \theta) P(\theta)$



Binomial model the 'coin-flip' model

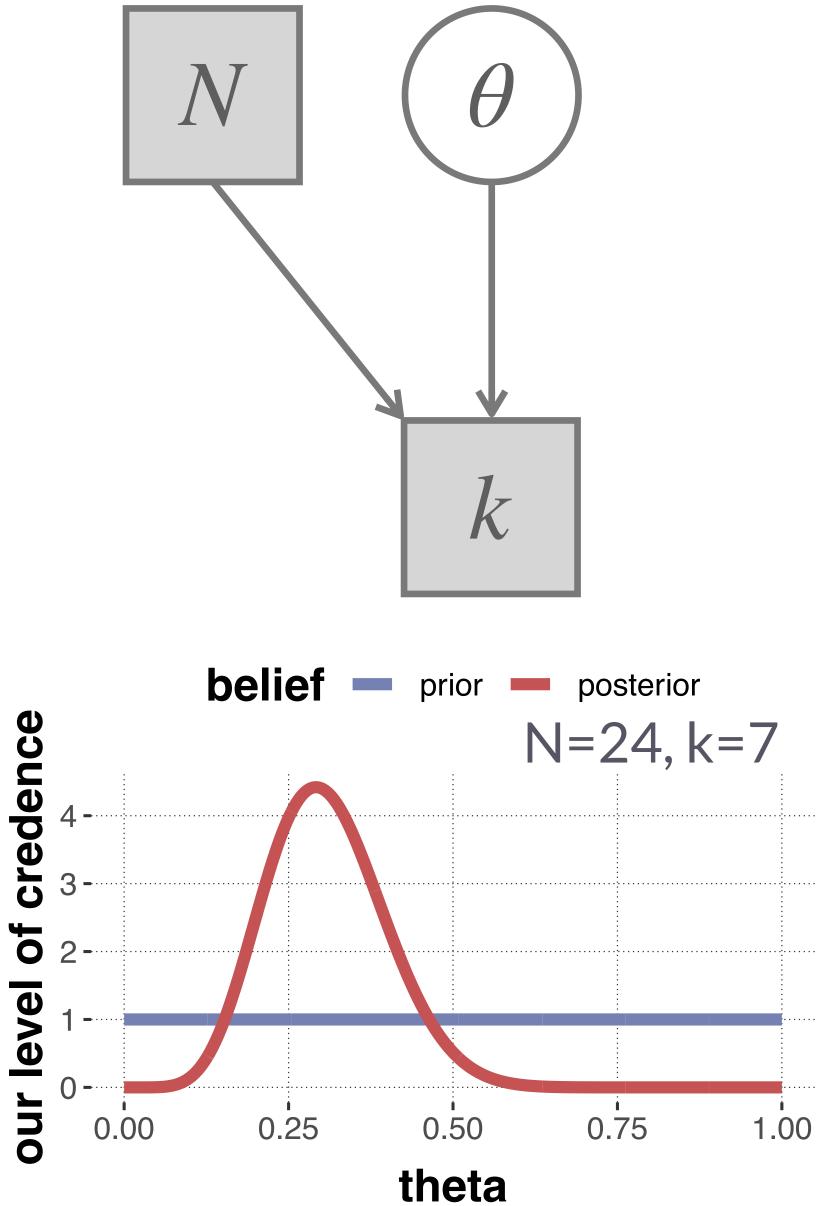
- data: pair of numbers $D = \{k, N\}$
 - ${\scriptstyle \bullet}\,N$ is the number of tosses
 - k is the number of heads (successes)
- variable:
 - heta is the number of heads (successes)
- uninformed prior:

 $\theta \sim \text{Beta}(1,1)$

likelihood function:

 $k \sim \text{Binomial}(\theta, N)$

- conventions for model graphs:
 - circles / squares: continuous / discrete variables
 - white / gray nodes: latent / observed variables



Simple linear regression model for a single predictor variable

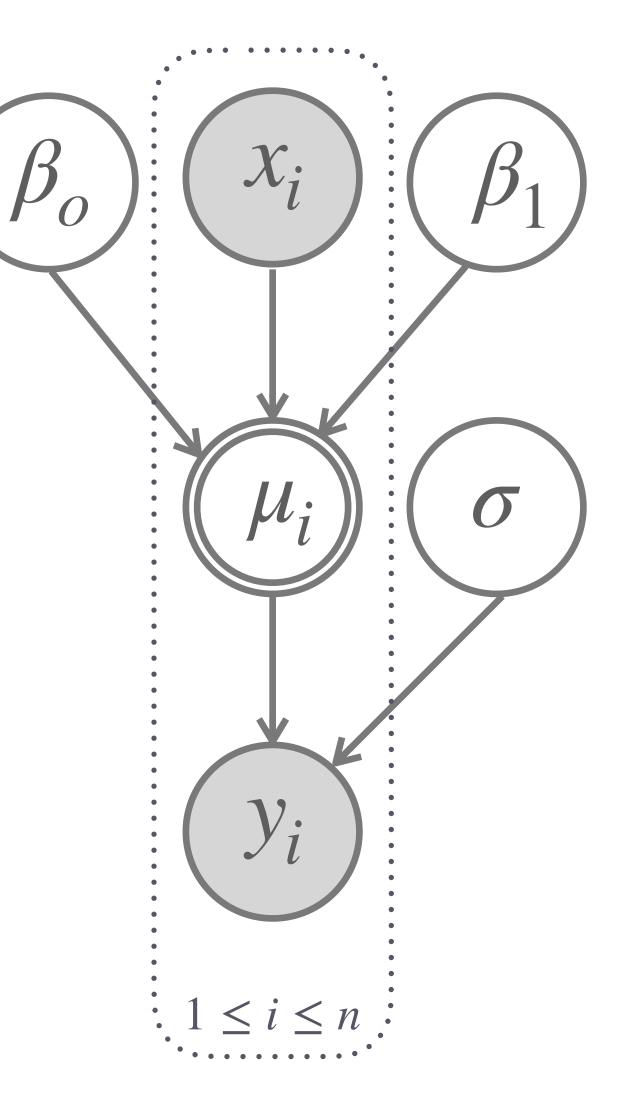
- data: *n* pairs of numbers $D = \{\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle\}$
 - x_i is the *i*-th observation of the **independent / predictor variable**
 - y_i is the *i*-th observation of the **dependent / to-be-predicted variable**
- parameters:
 - β_0 is the **intercept** parameter
 - β_1 is the **slope** parameter
 - σ is the standard deviation of a normal distribution
- derived variable: [shown in node w/ double lines]
 - μ_i is the linear predictor for observation *i*
- priors (uninformed):

 $\beta_0, \beta_1 \sim \text{Uniform}(-\infty, \infty)$ $\log(\sigma^2) \sim \text{Uniform}(-\infty, \infty)$

likelihood:

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

$$\mu_i = \beta_0 + x_1 \cdot \beta_1$$

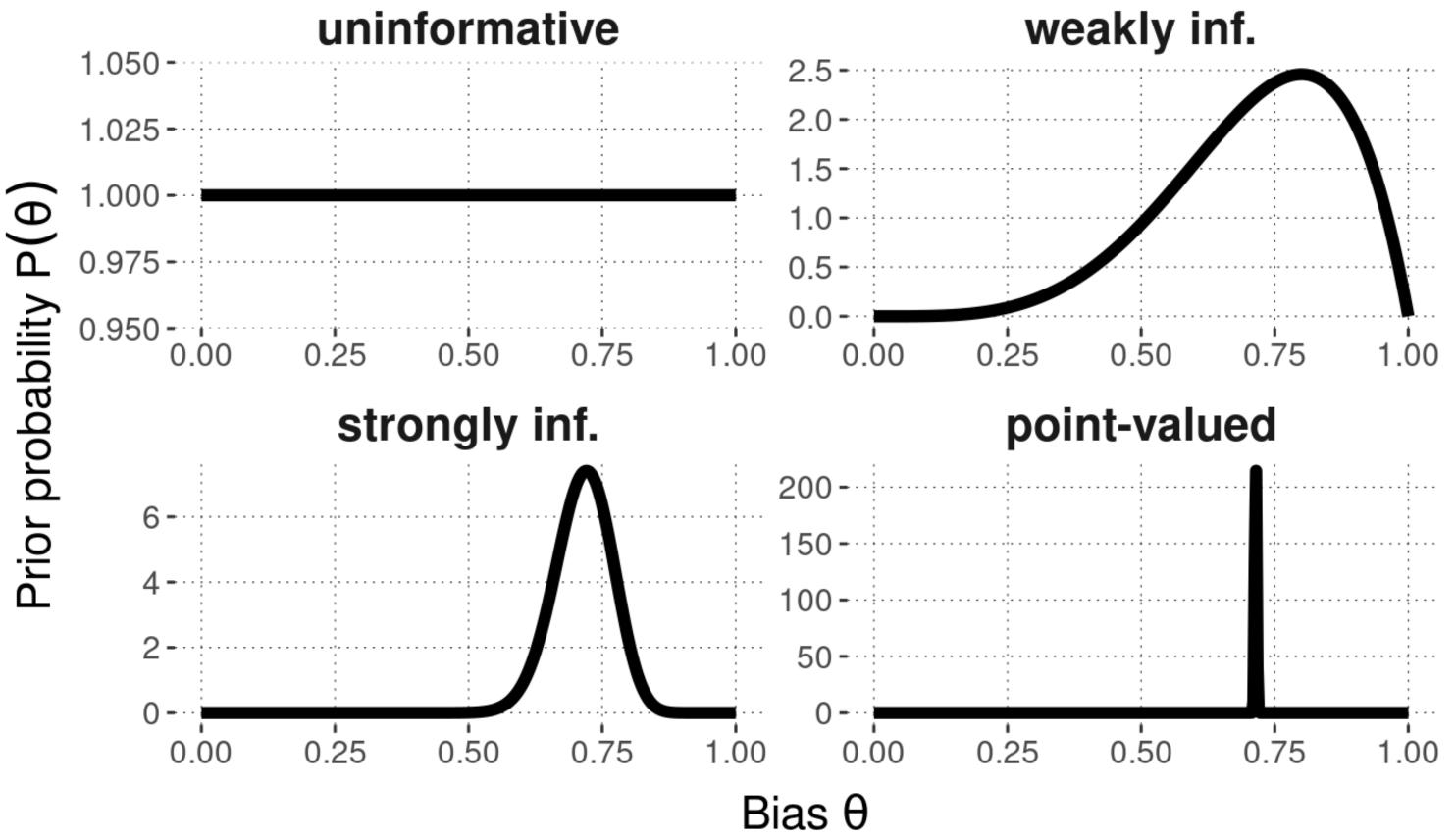


Likelihood, prior & posterior for the coin-flip model

Kinds of priors for a Binomial ('coin flip') model

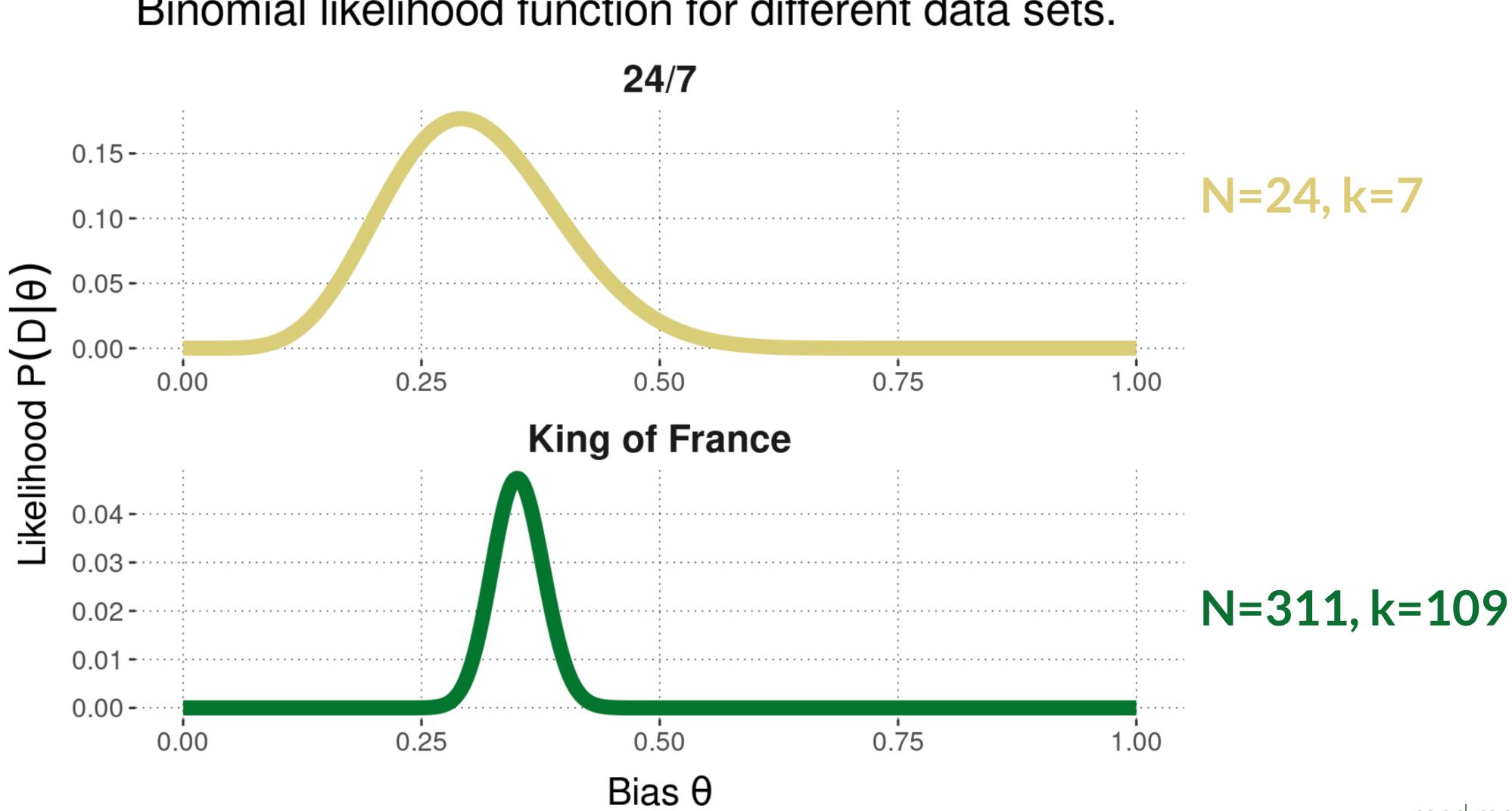
Different kinds of priors over bias θ

Binomial Model family

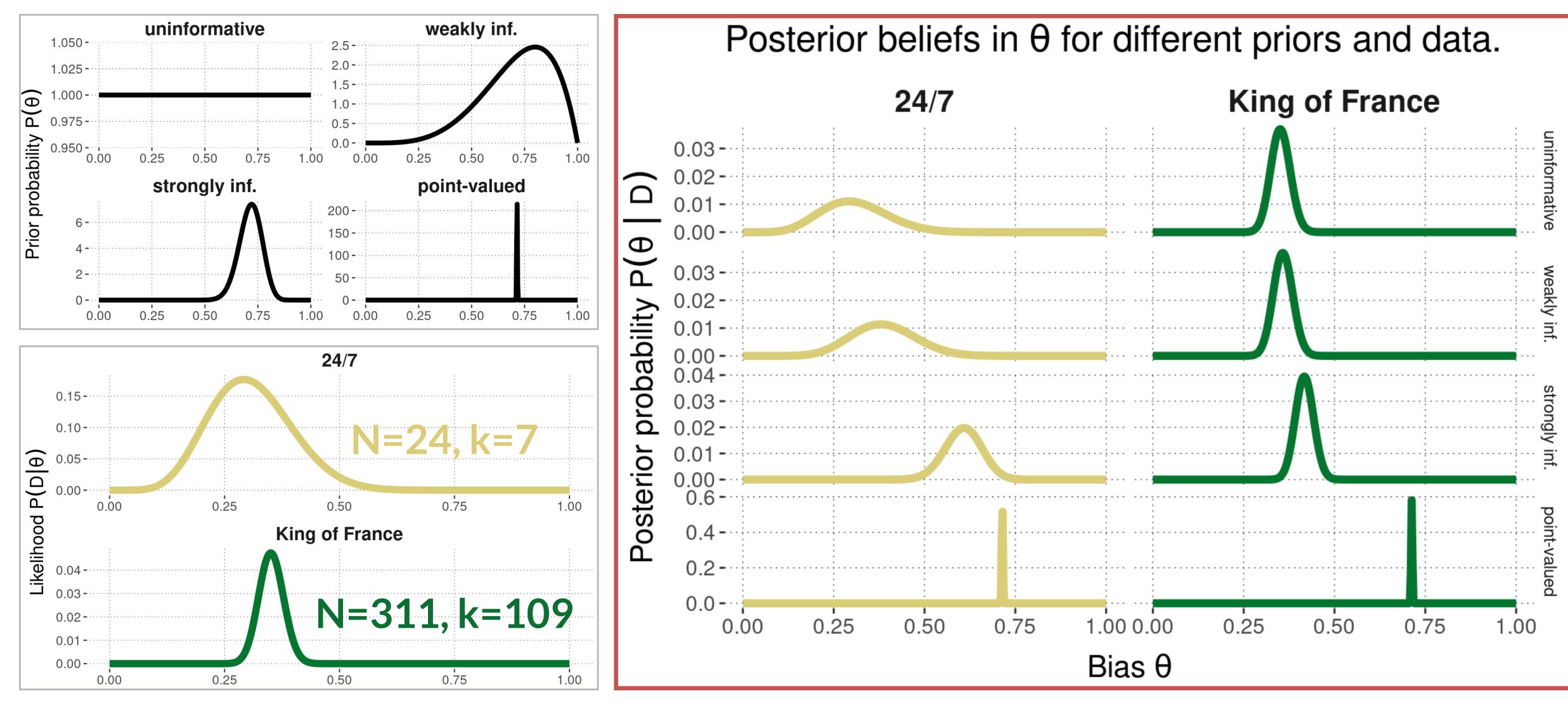


Binomial likelihoods two data sets

Binomial likelihood function for different data sets.



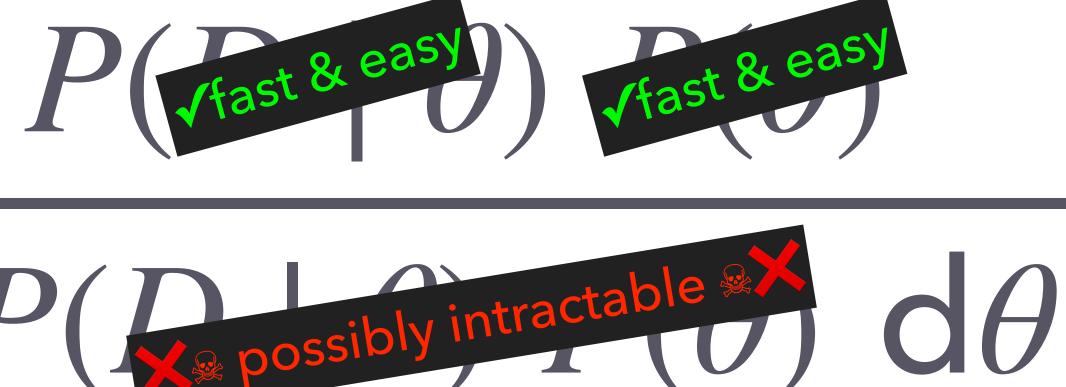
Posterior distributions for different priors and likelihoods



Computing posterior distributions

problem of computational complexity

$P(\theta \mid D)$

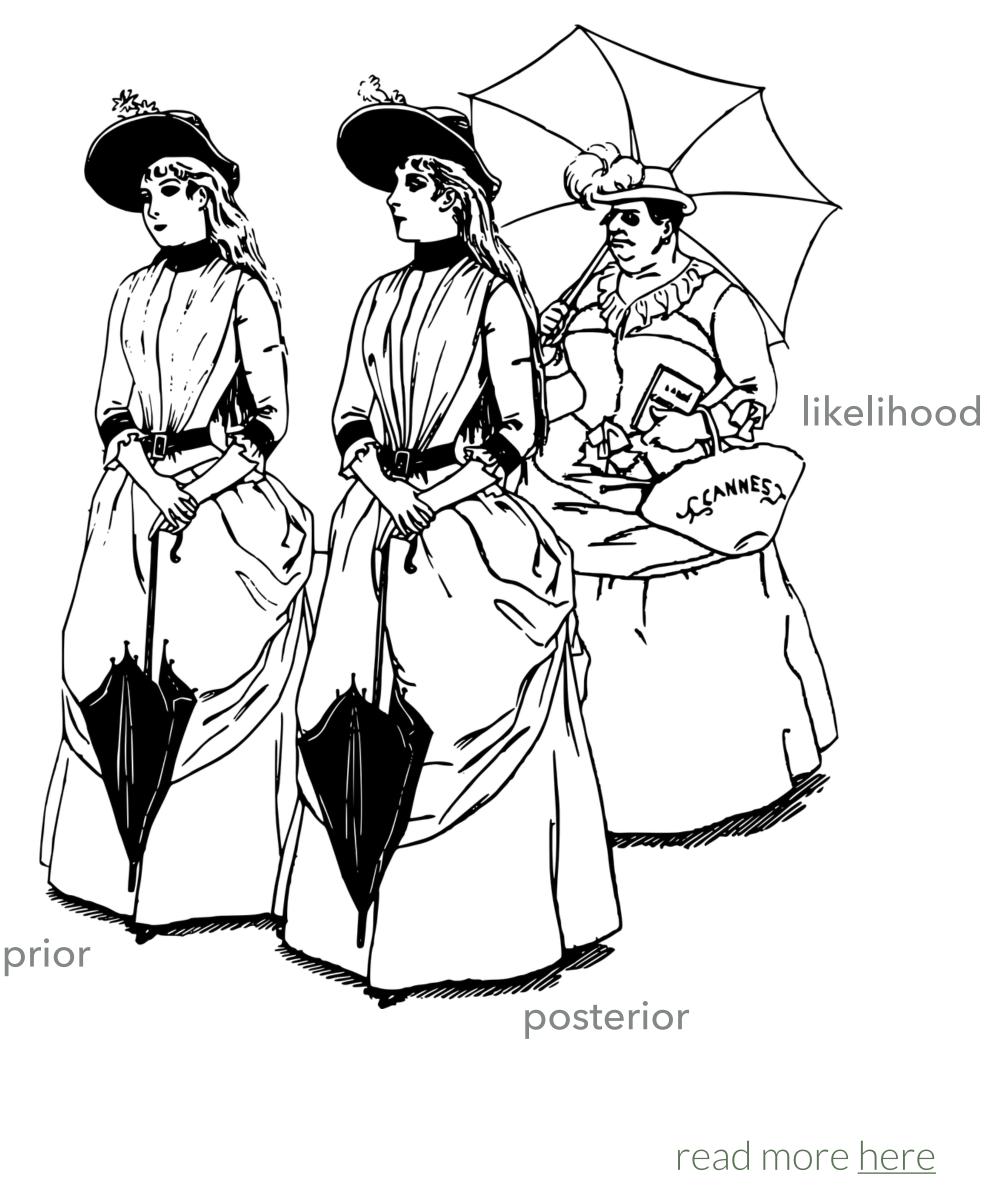


Posteriors from conjugacy

closed-form posteriors from clever choice of priors

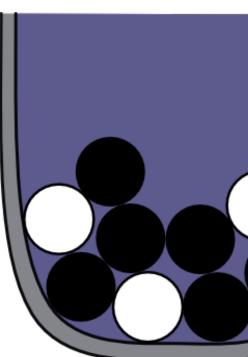
- prior $P(\theta)$ is a conjugate prior for likelihood $P(D \mid \theta)$ iff prior $P(\theta)$ and posterior $P(\theta \mid D)$ are the same kind of probability distribution, e.g.:
 - prior: $\theta \sim \text{Beta}(1,1)$
 - posterior: $\theta \mid D \sim \text{Beta}(8, 18)$
- claim: the beta distribution is a conjugate prior for the binomial likelihood function
 - proof:

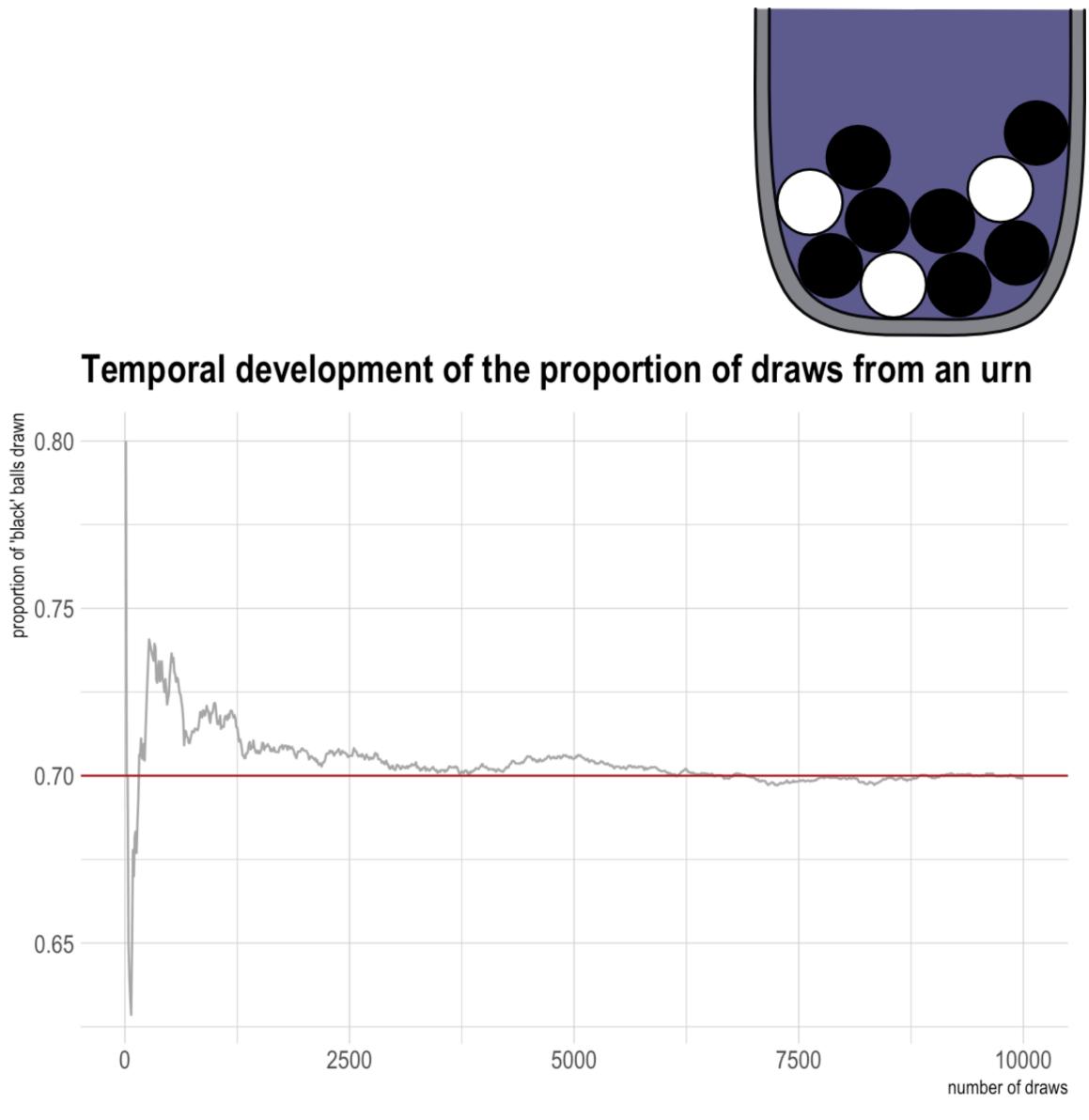
 $P(\theta \mid k, N) \propto \text{Binomial}(k; N, \theta) \text{Beta}(\theta \mid a, b)$ $P(\theta \mid k, N) \propto \theta^k (1 - \theta)^{N-k} \theta^{a-1} (1 - \theta)^{b-1}$ $P(\theta \mid k, N) \propto \theta^{k+a-1} (1-\theta)^{N-k+b-1}$ $P(\theta \mid k, N) = \text{Beta}(\theta \mid k + a, N - k + b)$

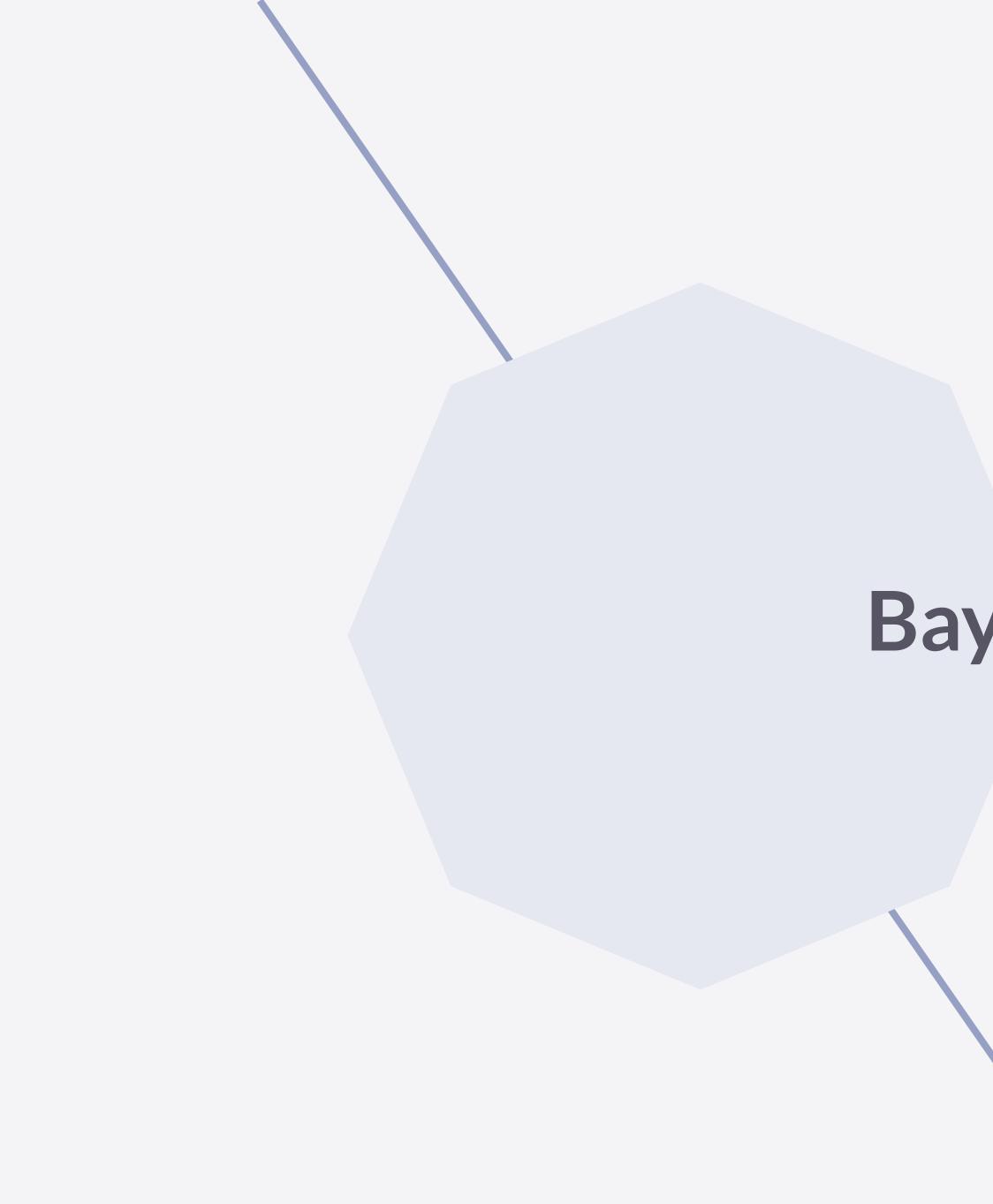


Approximating distributions via sampling our go-to solution for approximating posterior distributions beyond conjugacy

- we can approximate any probability distribution by either:
 - a large set of representative samples; or
 - an oracle that returns a sample if needed.



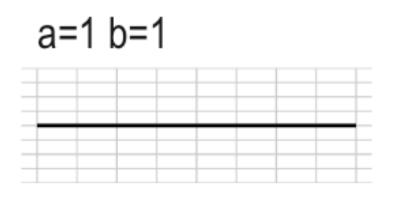


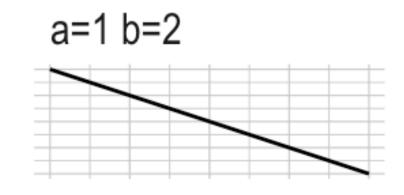


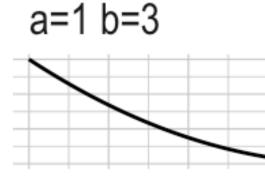
Bayesian parameter estimation

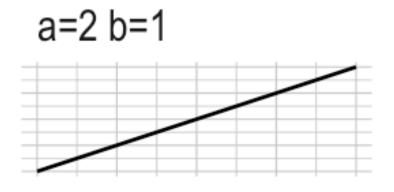
Sequential updating for the beta-binomial model

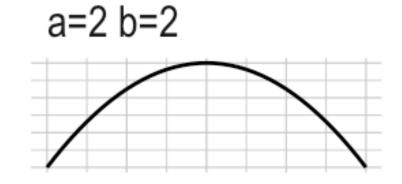
- sequence of updating does not matter
 - any order of single-observation updates
 - any 'chunking': whole data set, different subsets in whatever sequence (as long as disjoined)
- "today's posterior is tomorrow's prior"

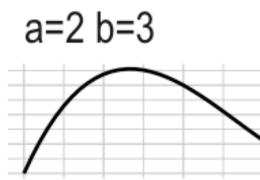


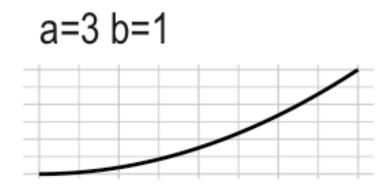


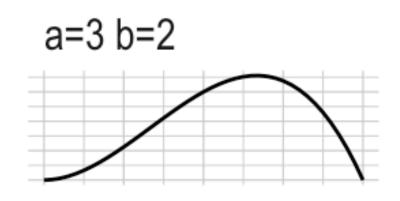


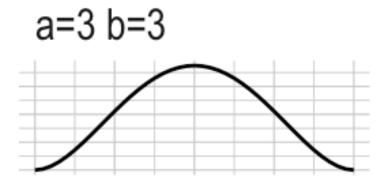












	-
	_
	-
	-
	<u> </u>

1	
_	

Sequential updating general proof

- claim: if $\{D_1, D_2\}$ is a partition of D, then $P(\theta \mid D) \propto P(\theta \mid D_1) P(D_2 \mid \theta)$
- sketch of proof:

$$P(\theta \mid D) = \frac{P(\theta) P(D \mid \theta)}{\int P(\theta') P(D \mid \theta') d\theta'}$$

$$= \frac{P(\theta) P(D_1 \mid \theta) P(D_2 \mid \theta)}{\int P(\theta') P(D_1 \mid \theta') P(D_2 \mid \theta') d\theta'}$$

$$= \frac{P(\theta) P(D_1 \mid \theta) P(D_2 \mid \theta)}{\frac{k}{k} \int P(\theta') P(D_1 \mid \theta') P(D_2 \mid \theta') d\theta'}$$

$$= \frac{\frac{P(\theta) P(D_1 \mid \theta)}{k} P(D_2 \mid \theta)}{\int \frac{P(\theta') P(D_1 \mid \theta')}{k} P(D_2 \mid \theta) d\theta'}$$

$$= \frac{P(\theta \mid D_1) P(D_2 \mid \theta)}{\int P(\theta' \mid D_1) P(D_2 \mid \theta') d\theta'}$$

[from multiplicativity of likelihood]

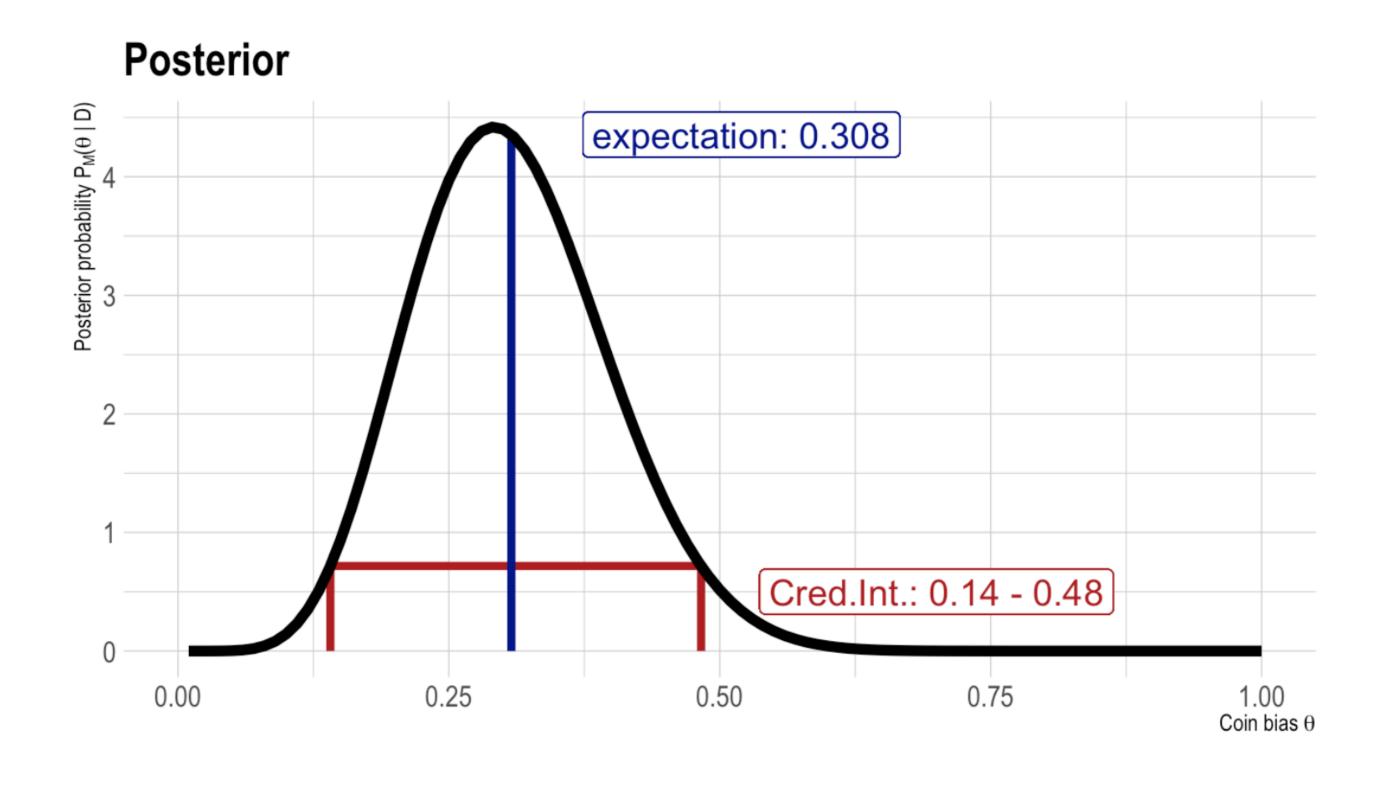
[for random positive k]

[rules of integration; basic calculus]

[Bayes rule with
$$k = \int P(\theta)P(D_1 \mid \theta)d\theta$$
]

Parameter estimation point- and interval-valued estimates

- Bayes' rule for parameter estimation: $P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{\int P(D \mid \theta) P(\theta) d\theta}$
- common point estimates ("best" values):
 - maximum likelihood estimate (MLE)
 - maximum a posteriori (MAP)
 - posterior mean / expected value
- common interval estimates (range of "good" values):
 - confidence intervals
 - credible intervals



Point-valued estimates

MLE, MAP and (posterior) expected value

► MLE:

- $\arg \max P(D \mid \theta)$
- doesn't take prior into account (not Bayesian)
- not necessarily unique

► MAP:

- $\arg \max P(\theta \mid D)$
- local / does not consider full distribution (not fully Bayesian)
- increasingly uninformative in larger parameter spaces
- not necessarily unique
- posterior mean / expected valued

$$\mathbb{E}_{P(\theta|D)} = \int \theta \ P(\theta \mid D) \ \mathrm{d}\theta$$

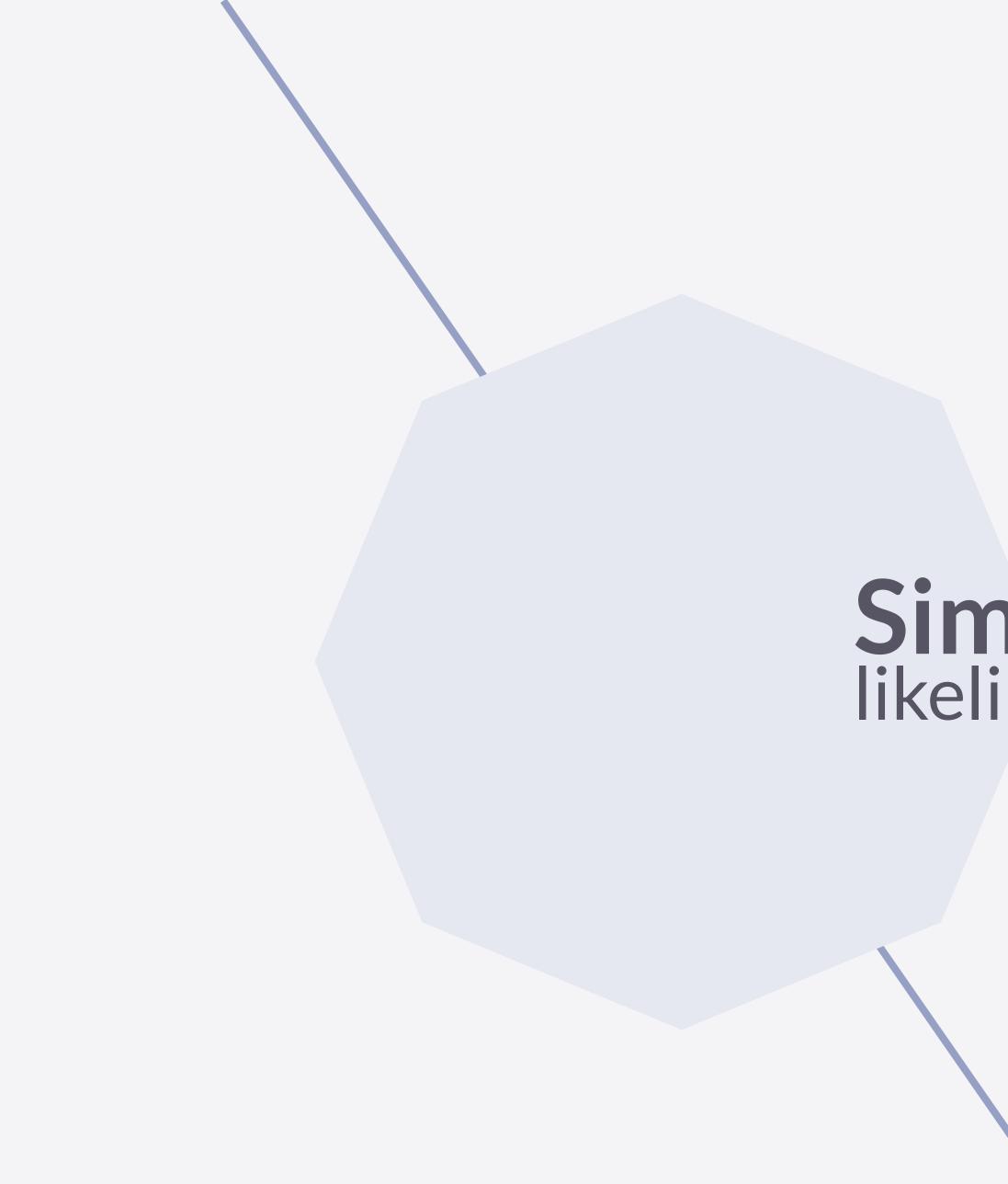
- holistic / depends on full distribution ("genuinely Bayesian")
- always unique (for proper priors/posteriors)

Bayesian hypothesis testing /w posterior credible intervals !!! caveat: it is controversial whether this is the best (Bayesian) approach to hypothesis testing !!!

- consider an interval-based hypothesis: $\theta \in I$
 - e.g., inequality-based: "coin is biased towards heads" $\theta > 0.5$
 - e.g. a region of practical equivalence [ROPE]: an ϵ -region around some θ^* : $I = [\theta^* \epsilon, \theta^* + \epsilon]$
- if [l; u] is a posterior credible interval for θ , we consider this:
 - reason to accept hypothesis *I* if [*l*; *u*] is contained entirely in *I*;
 - reason to reject hypothesis I if [l; u] and I have no overlap;
 - withhold judgement otherwise.
- this approach is "categorical" (accept, reject, suspend) and not quantitative

Posterior plausibility of interval-based hypotheses this is NOT a testing approach, just one way of quantifying support

- consider an interval-based hypothesis $\theta \in I$ as before
- the posterior plausibility of I given a model M and the data D is just the posterior probability: $P(\theta \in I \mid D)$
- not a notion of observational evidence:
 - if prior is high for *I* and data is uninformative, posterior plausibility can be high
- good-enough first heuristic when priors are "unbiased" regarding I
- more on hypothesis testing later



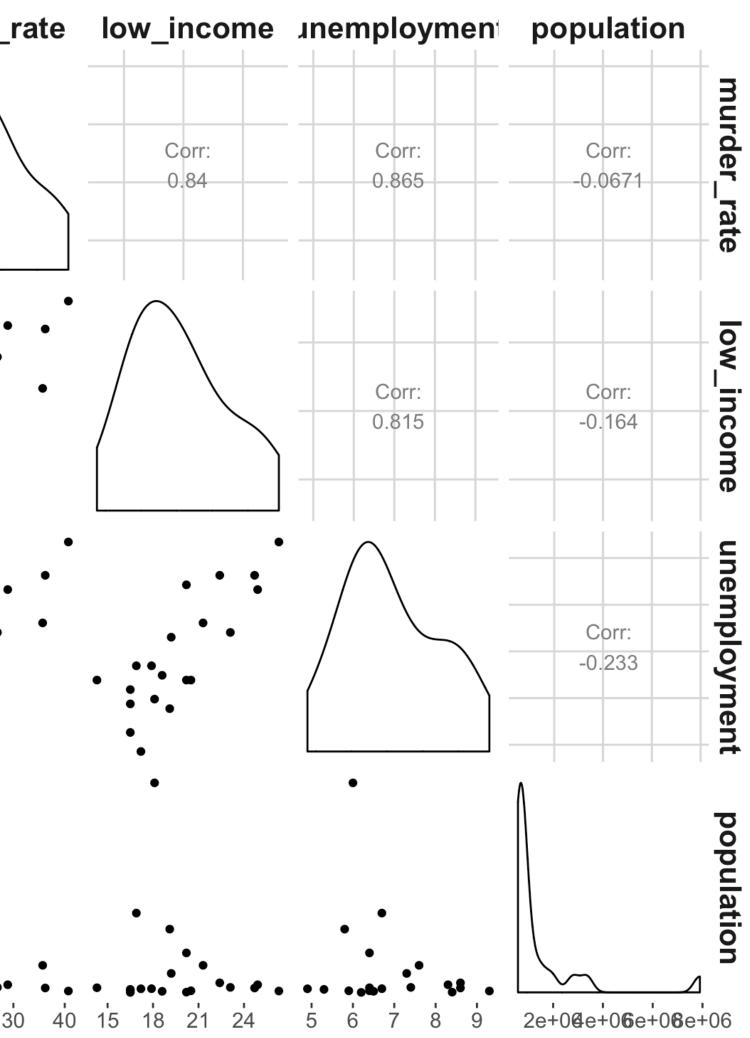
Simple linear regression likelihood & Bayesian posterior

Murder data

annual murder rate, average income, unemployment rates and population

Murder r	N			x 4	A tibble: 20	#	##
murder_r		population	unemployment	low_income	murder_rate		##
\bigwedge	0.03 -	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		##
/		587000	6.2	16.5	11.2	1	##
/	0.02 -	643000	6.4	20.5	13.4	2	##
	0.01 -	635000	9.3	26.3	40.7	3	##
	0.00 -	692000	5.3	16.5	5.3	4	##
•		1248000	7.3	19.2	24.8	5	##
•	24 -	643000	5.9	16.5	12.7	6	##
• •	21 -	1964000	6.4	20.2	20.9	7	##
	18 -	1531000	7.6	21.3	35.7	8	##
•	15 -	713000	4.9	17.2	8.7	9	##
	9 -	749000	6.4	14.3	9.6	10	##
• ••	8 -	7895000	6	18.1	14.5	11	##
••	7 -	762000	7.4	23.1	26.9	12	##
•••	6 -	2793000	5.8	19.1	15.7	13	##
•	5-	741000	8.6	24.7	36.2	14	##
•	8e+06 -	625000	6.5	18.6	18.1	15	##
	6e+06 -	854000	8.3	24.9	28.9	16	##
	4e+06-	716000	6.7	17.9	14.9	17	##
• •		921000	8.6	22.4	25.8	18	##
	2e+06 -	595000	8.4	20.2	21.7	19	##
10 20 30		3353000	6.7	16.9	25.7	20	##

rate data



annual murders per million inhabitants

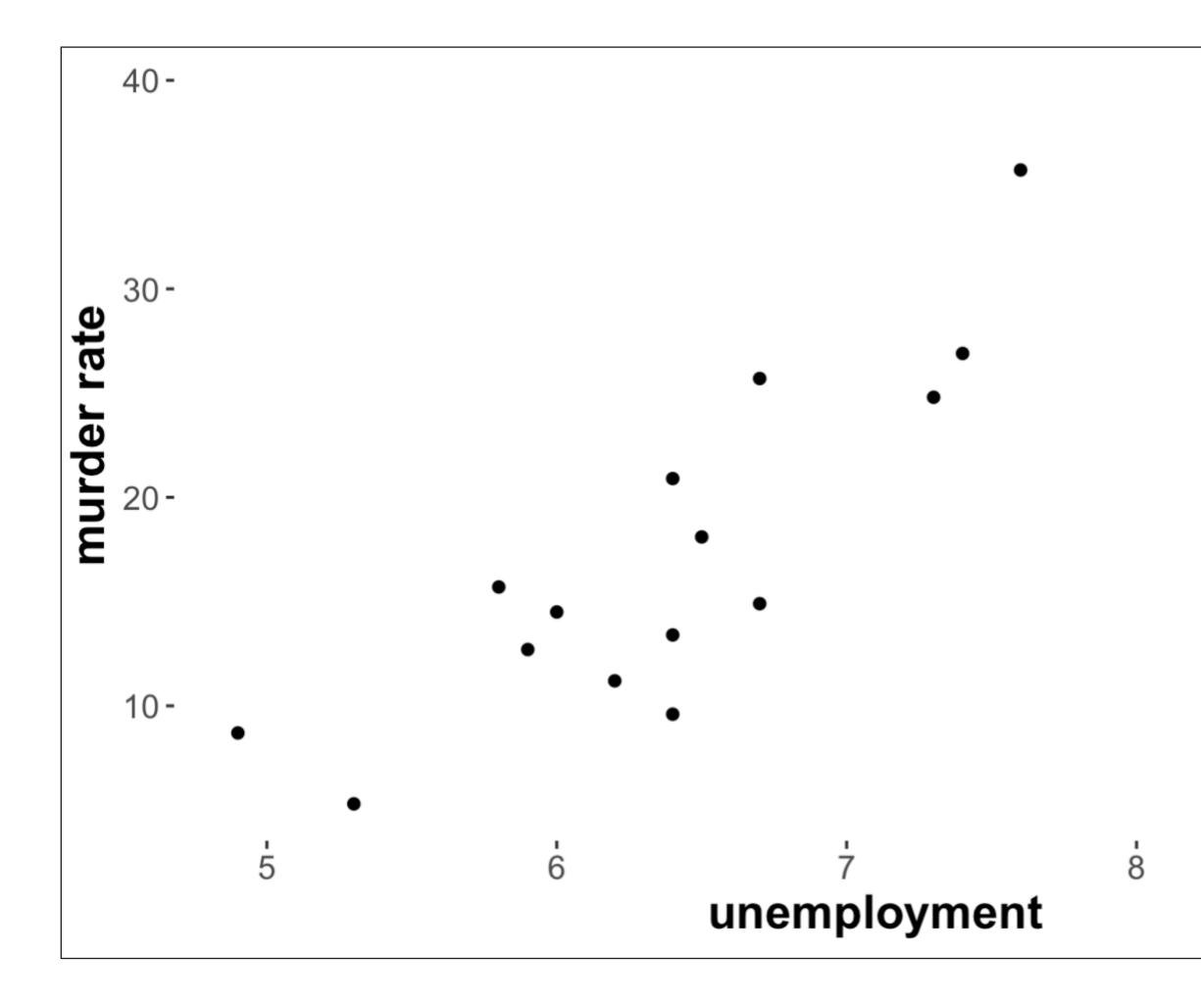
percentage inhabitants with low income

percentage inhabitants who are unemployed

total population

Predicting murder rate based on unemployment rate

some wild linear guessing



9

We are to predict the murder rate y_i of a randomly drawn city *i*. We know that city's unemployment rate, x_i , but nothing more.

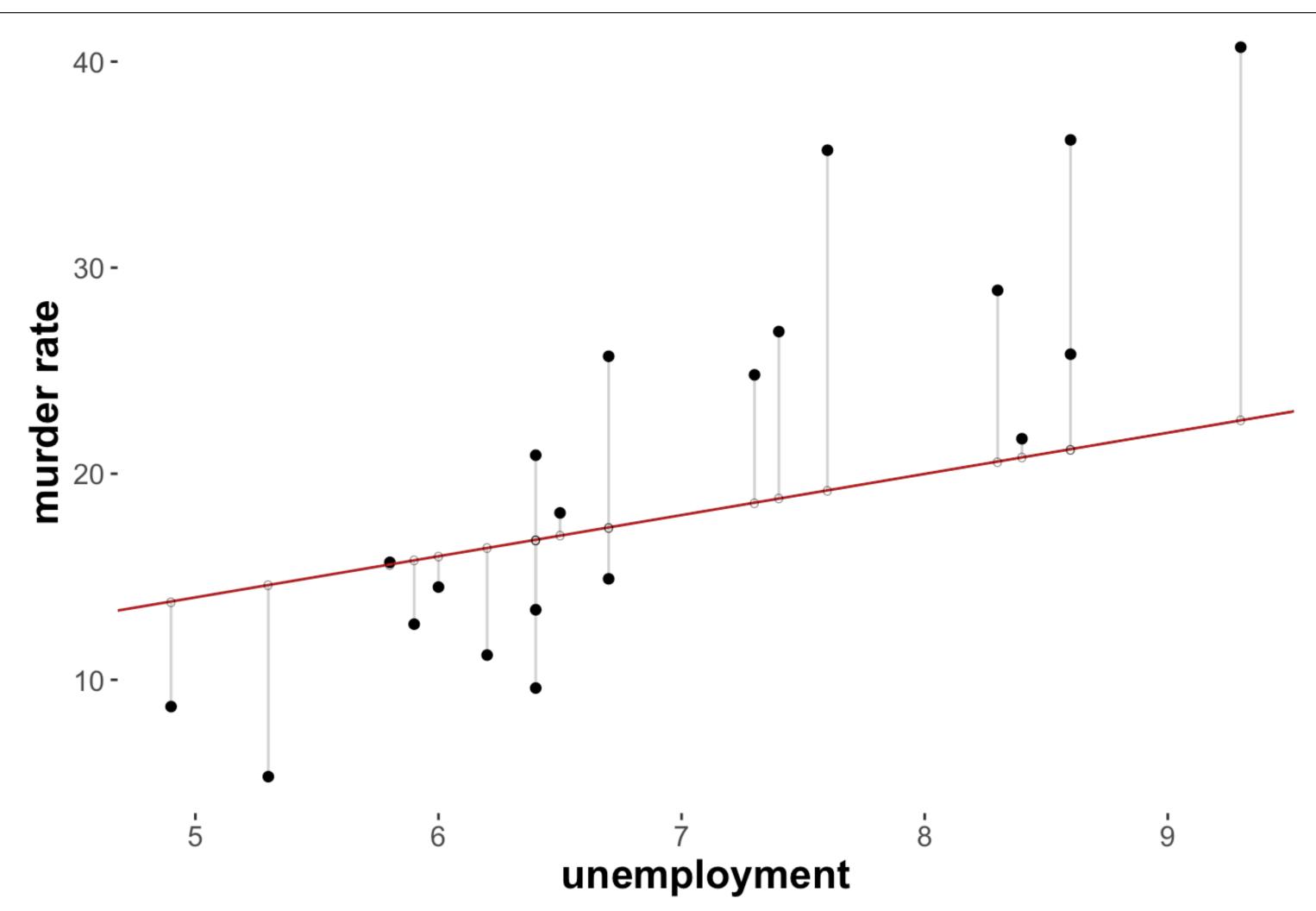
Let's just assume the following **linear relationship** to make a prediction b/c why not?!?

 $\hat{y}_i = 4 + 2x_i$

How good is this prediction?



How good is any given prediction? quantifying distance or likelihood



Distance-based approach Residual Sum-of-Squares: $RSS = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$

no predictions about spread around linear predictor

Likelihood-based approach: Normal likelihood: LH = $\mathcal{N}(y_i \mid \mu = \hat{y}_i, \sigma)$ i=]

fully predictive

Likelihood-based simple linear regression

likelihood:

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

 $\mu_i = \beta_0 + x_1 \cdot \beta_1$

- differential likelihood:
 - parameter triples $\langle \beta_0, \beta_1, \sigma \rangle$ can be better or worse
 - higher vs. lower likelihood $P(D \mid \beta_0, \beta_1, \sigma)$
- maximum-likelihood solution:

arg max $P(D \mid \beta_0, \beta_1, \sigma)$ β_0,β_1,σ

- standard (frequentist) solution
- MLE corresponds to MAP for "flat" priors

Bayesian approach: full posterior distribution $P(\beta_0, \beta_1, \sigma \mid D) \propto P(D \mid \beta_0, \beta_1, \sigma) P(\beta_0, \beta_1, \sigma)$

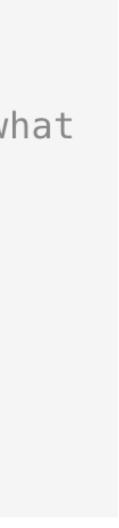
lower likelihood 40 -30 murder rate 10unemployment higher likelihood 40 -30. murder rate 10-6 9 unemployment

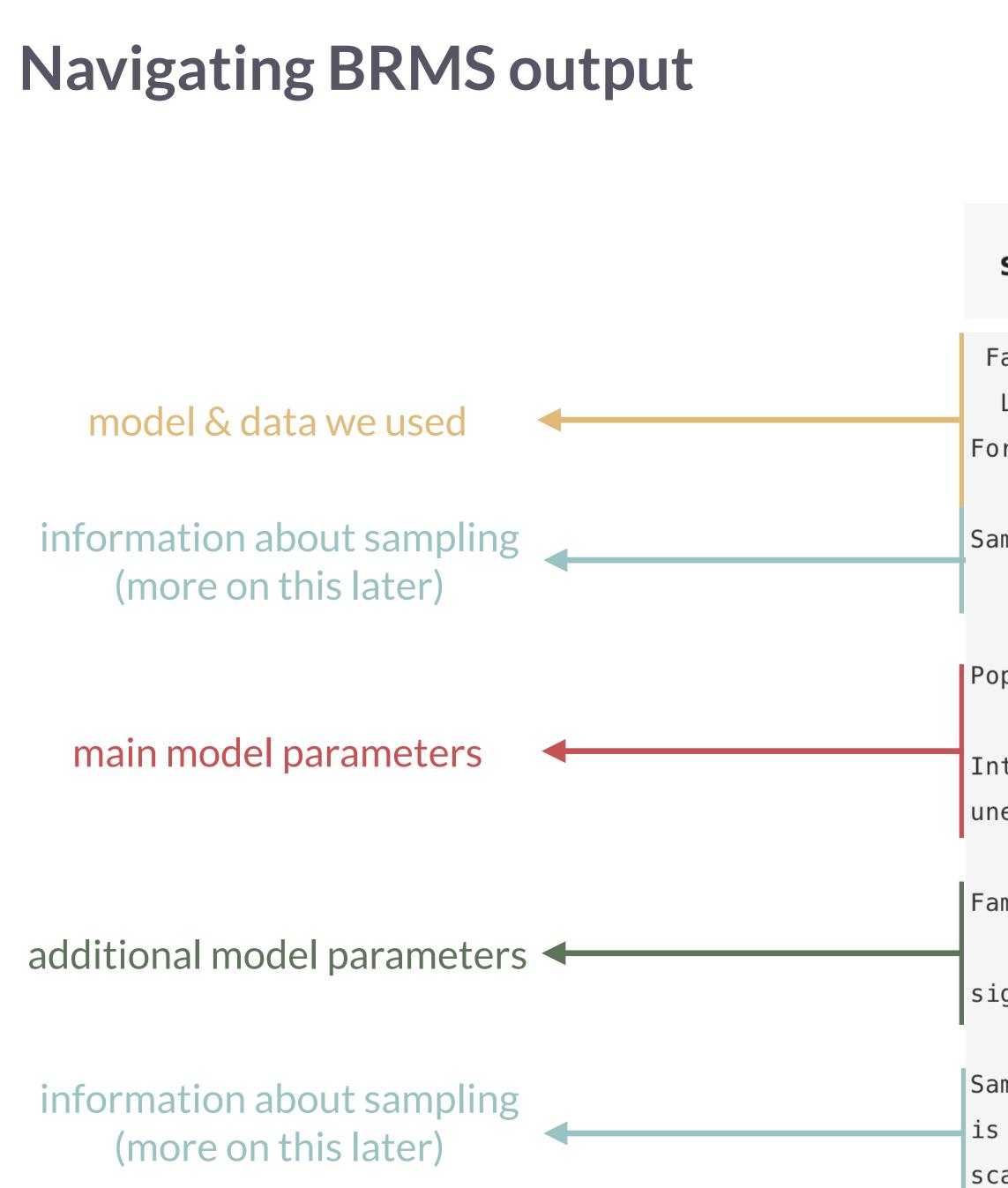
Bayesian linear regression in R using BRMS and Stan

- R package BRMS provides high-level interface for **Bayesian linear regression**
- models are specified with R's formula syntax
- returns samples from the posterior distribution
 - alternatives: MAPs, variational inference
- runs probabilistic programming language Stan in the background
 - powerful, cutting-edge tool for Bayesian computation
 - strong, non-commercial development team
 - many interfaces: stand-alone, R, Python, Julia, ...

fit_brms_murder <- brm(</pre>

specify what to explain in terms of what using the formula syntax # formula = murder_rate \sim unemployment, # which data to use data = murder_data





summary(fit_brms_murder)

Family: gaussian Links: mu = identity; sigma = identity Formula: murder_rate ~ unemployment Data: murder_data (Number of observations: 20) Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup samples = 4000

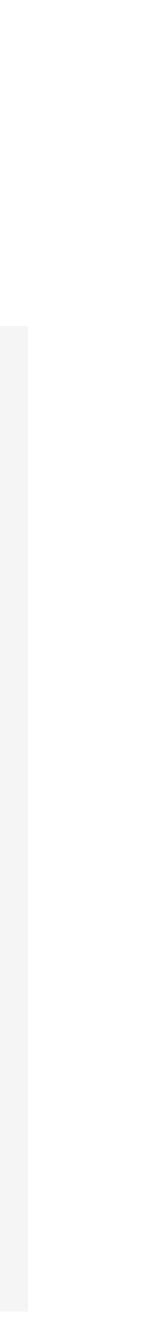
Population-Level Effects:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
ntercept	-28.48	7.32	-42.05	-13.79	1.00	3014	2362
nemployment	7.07	1.04	4.97	9.04	1.00	2978	2451

Family Specific Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
igma	5.42	0.96	3.88	7.63	1.00	2664	2196

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

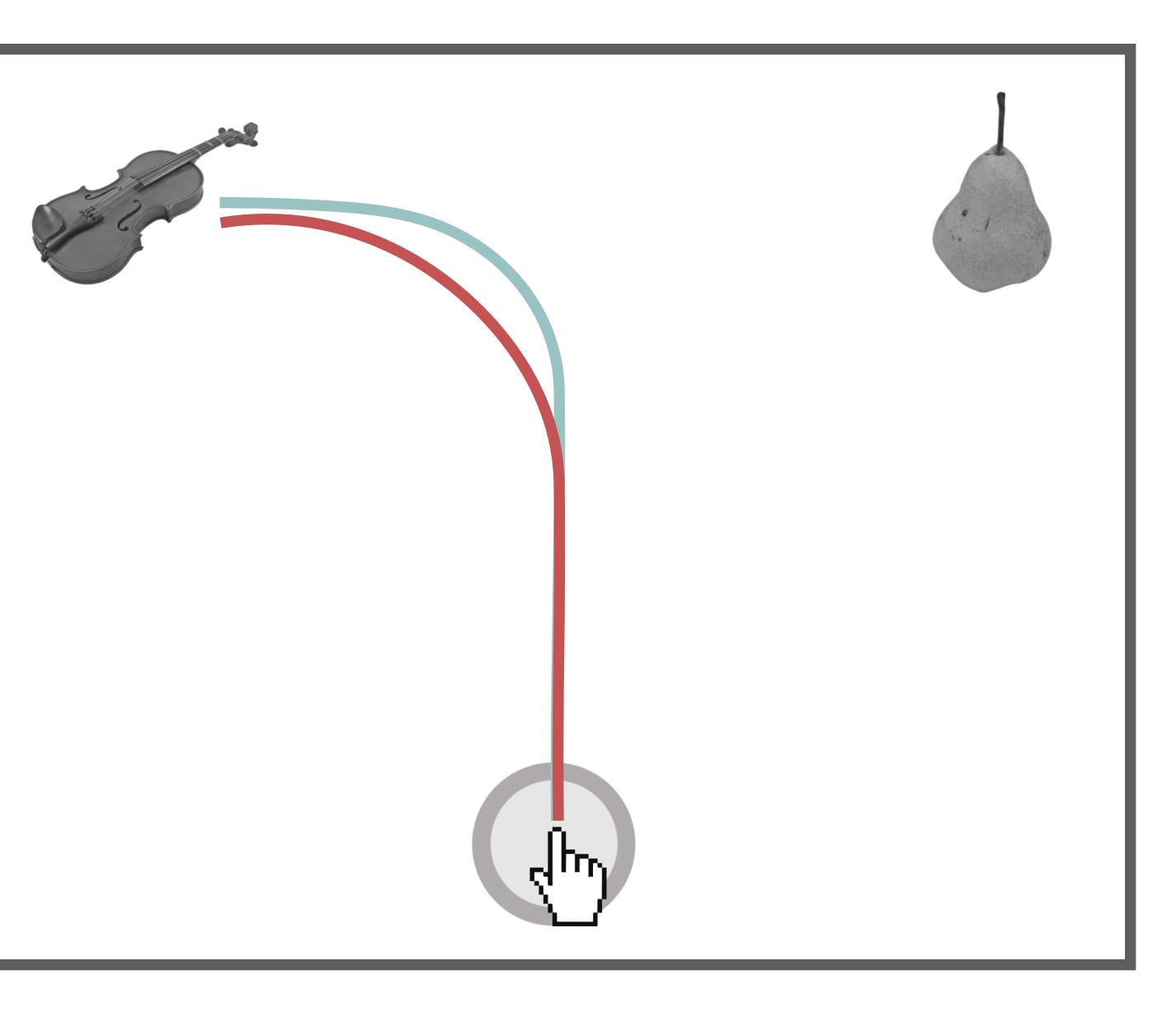


Mouse-tracking data on typicality in category decisions

Mouse-tracking

Hand-movement during decision making

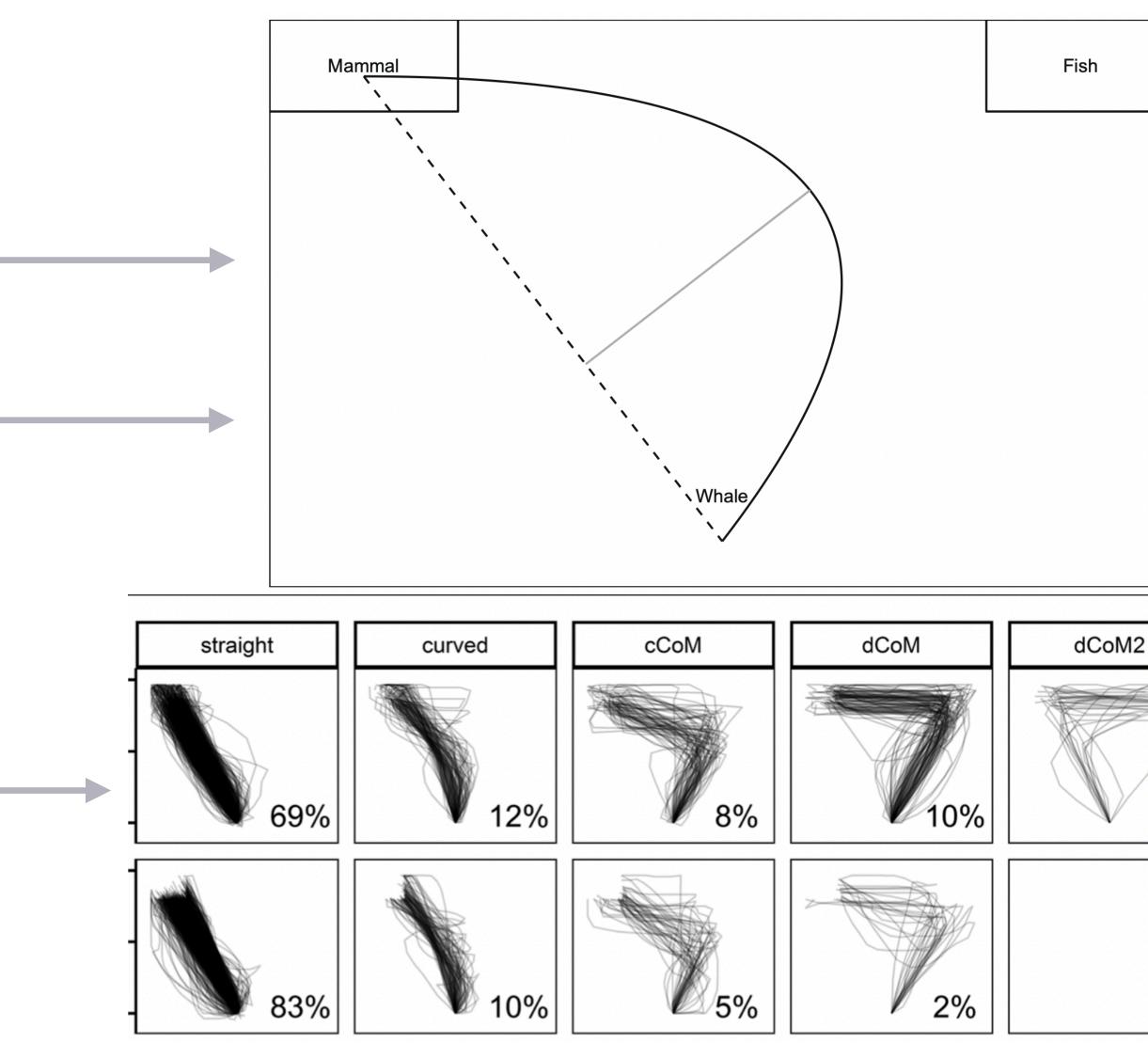
- general idea: motor-execution provides information about the ongoing decision process
 - uncertainty
 - gradual evidence accumulation
 - change-of-mind
 - time-point of decision
 - • •
- many subtle design decisions
 - click vs touch
 - move horizontally or vertically
 - •

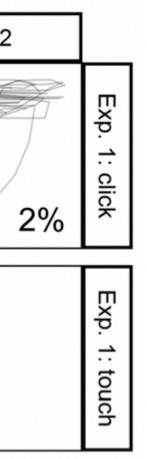


Mouse-tracking

common measures of mouse-trajectories

- raw data are lists of triples
 - (time, x-position, y-position)
- commonly used measures
 - area-under the curve (AUC)
 - area between the mouse trajectory and a straight line from start to selected option
 - maximal deviation (MAD)
 - maximum distance between trajectory and straight line from start to selected option
 - correctness
 - whether choice of option was correct or not
 - reaction time (RT)
 - how long did the movement last in total
 - type of trajectory
 - result of clustering analysis based on shape of the trajectories (usually some 3-5 categories)
 - x-flips
 - number of times the trajectory crossed the vertical middle line (at x = 0)





Running example

category recognition for typical vs atypical exemplars

- materials & procedure
 - participants read an animal name (e.g. 'dolphin')
 - they choose the true category the animal belongs to (e.g., 'fish' or 'mammal')
 - some trigger words are typical others atypical representatives of the true category
- methodological investigation:
 - two groups: click vs touch to select category
- hypothesis: typical exemplars are easier to categorize than atypical ones
 - fewer mistakes
 - smaller RTs, AUC, MAD
 - less x-flips
 - less "change-of-mind" curve types
- research question (methods): any differences between click & touch selection?

variables used in the data set

- trial_id = unique id for individual trials
- MAD = maximal deviation into competitor space
- AUC = area under the curve
- xpos_flips = the amount of horizontal direction changes
- RT = reaction time in ms
- prototype_label = different categories of prototypical movement strategies
- subject_id = unique id for individual participants
- group = groups differ in the response design (click vs. touch)
- condition = category membership (Typical vs. Atypical)
- exemplar = the concrete animal
- category_left = the category displayed on the left
- category_right = the category displayed on the right
- category_correct = the category that is correct
- response = the selected category
- correct = whether or not the response matches category_correct

